(本大題10分)
曲線為參數(shù),在曲線上求一點(diǎn),使它到直線為參數(shù)的距離最小,求出該點(diǎn)坐標(biāo)和最小距離.
  
此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有直線與圓的參數(shù)方程與普通方程的互化,點(diǎn)到直線的距離公式,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,以及特殊角的三角函數(shù)值,根據(jù)曲線C1的參數(shù)方程設(shè)出所求P的坐標(biāo),根據(jù)點(diǎn)到直線的距離公式表示出d,進(jìn)而利用三角函數(shù)來解決問題是解本題的思路。
將直線的參數(shù)方程化為普通方程,曲線C1任意點(diǎn)P的坐標(biāo)為(1+cosθ,sinθ),利用點(diǎn)到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),與分母約分化簡后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進(jìn)而得到距離d的最小值,并求出此時(shí)θ的度數(shù),即可確定出所求點(diǎn)P的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x、y滿足,求的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸為極軸)中,曲線的方程,相交于兩點(diǎn),則公共弦的長是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

“曲線上的點(diǎn)的坐標(biāo)都是方程的解”是“曲線的方程是”的(  )條件
A.充要B.充分不必要C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系中,曲線相交于點(diǎn),則線段的長度為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線的參數(shù)方程為為參數(shù)),直線的方程為,則曲線上到直線距離為的點(diǎn)的個(gè)數(shù)為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線的參數(shù)方程為:為參數(shù)),圓C的極坐標(biāo)為,則直線與圓C的位置關(guān)系為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

參數(shù)方程為參數(shù))表示的普通方程是_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線為參數(shù))的焦點(diǎn)坐標(biāo)為(    )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

同步練習(xí)冊答案