已知實數(shù)x,y滿足x≥1,y≥1,(logax)2+(logay)2=loga(ax2)+loga(ay2),當a>1時,求loga(xy)的取值范圍.
解:∵x≥1,y≥1,a>1,
∴(log
ax)
2+(log
ay)
2=log
a(ax
2)+log
a(ay
2)可變形為
(log
ax)
2+(log
ay)
2=log
aa+2log
ax+log
aa+2log
ay,
即(log
ax)
2+(log
ay)
2-2log
ax-2log
ay-2=0,
即(log
ax+log
ay)
2-2log
ax•log
ay-2(log
ax+log
ay)-2=0
設log
ax=m,log
ay=n,則m≥0,n≥0,且(m+n)
2-2mn-2(m+n)-2=0
∵mn≤(
)
2=
∴(m+n)
2-2mn-2(m+n)-2=0≥(m+n)
2-2×
-2(m+n)-2
即(m+n)
2-4(m+n)-4≤0
∴2-2
≤m+n≤2+2
即2-2
≤log
ax+log
ay≤2+2
即2-2
≤log
a(xy)≤2+2
又x≥1,y≥1,a>1,可得0≤log
a(xy)
所以0≤log
a(xy)≤2+2
分析:先利用對數(shù)運算性質將已知對數(shù)等式變形為關于log
ax,log
ay的等式,再利用換元法及均值定理將等式轉化為不等式,解不等式即可得所求范圍
點評:本題考查了對數(shù)運算性質,利用均值定理化等式為不等式求變量范圍的解題技巧,轉化化歸的思想方法