2.已知函數(shù)y=($\frac{1}{3}$)|x+1|
(1)作出函數(shù)的圖象(簡圖);
(2)由圖象指出其單調(diào)區(qū)間;
(3)由圖象指出當x取什么值時函數(shù)有最值,并求出最值.

分析 (1)去絕對值符號,利用函數(shù)圖象變換分段畫出函數(shù)圖象;
(2)根據(jù)函數(shù)圖象的單調(diào)性得出單調(diào)區(qū)間;
(3)根據(jù)函數(shù)圖象得出函數(shù)的最值.

解答 解:(1)當x+1≥0即x≥-1時,y=($\frac{1}{3}$)x+1
當x+1<0即x<-1時,y=($\frac{1}{3}$)-x-1=3x+1
作出函數(shù)的圖象如圖所示:

(2)由圖象可知函數(shù)y=($\frac{1}{3}$)|x+1|的增區(qū)間為(-∞,-1),減區(qū)間為(-1,+∞).
(3)由圖象可知x=-1時,函數(shù)取得最大值1,函數(shù)沒有最小值.

點評 本題考查了基本初等函數(shù)的圖象與圖象變換,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.設A表示“中國所有省會城市”組成的集合,則深圳∉A;廣州∈A(填∈或∉).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若f(n)=1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$(n∈N*),則f(k+1)-f(k)=$\frac{1}{2k+1}$$-\frac{1}{2k+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)的定義域是[$\frac{1}{2}$,1],則函數(shù)f(2x)的定義域為[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,AB=4,AC=2,P,Q分別是邊AB和AC上的動點,且滿足S△APQ=$\frac{1}{2}$S△ABC(其中S△ABC=$\frac{1}{2}$AB•AC•sin∠A).若設AP=x,AQ=y.
(1)寫出x的取值范圍;
(2)求y=f(x)的解析式;
(3)作出函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若行列式$|\begin{array}{l}{-1}&{5}&{x}\\{1}&{x}&{3}\\{7}&{8}&{9}\end{array}|$中,元素-1的代數(shù)余子式大于0,則x滿足的條件是x>$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=|log2x|-($\frac{1}{2}$)x的零點個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.過M(-1,0)作斜率為k的直線l,交拋物線m:y2=4x于P1,P2兩點,若P為弦P1P2中點,直線PF(F為焦點)的斜率為k′,設$\frac{k′}{k}$=f(k),求f(k)的解析式,并求其定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={1,9,x},集合B={1,x2},若A∩B=B,求x的值.

查看答案和解析>>

同步練習冊答案