9.設正四面體ABCD的四個面BCD,ACD,ABD,ABC的中心,分別為O1,O2,O3,O4則直線O1O2與O3O4所成角的大小為$\frac{π}{2}$.

分析 以O1為原點,O1C為x軸,O1A為z軸,建立空間直角坐標系,利用向量法能求出O1O2與O3O4所成的角.

解答 解:以O1為原點,O1C為x軸,O1A為z軸,建立空間直角坐標系,建立如圖所求空間直角坐標系,
設AB=1,則B(-$\frac{\sqrt{3}}{6}$,-$\frac{1}{2}$,0),D(-$\frac{\sqrt{3}}{6}$,$\frac{1}{2}$,0),C($\frac{\sqrt{3}}{3}$,0,0),A(0,0,$\frac{\sqrt{6}}{3}$),
∴O1(0,0,0),${O}_{2}(\frac{\sqrt{3}}{18},\frac{1}{6},\frac{\sqrt{6}}{9})$,${O}_{3}(-\frac{\sqrt{3}}{9},0,\frac{\sqrt{6}}{9})$,${O}_{4}(\frac{\sqrt{3}}{18},-\frac{1}{6},\frac{\sqrt{6}}{9})$,
$\overrightarrow{{O}_{1}{O}_{2}}$=($\frac{\sqrt{3}}{18},\frac{1}{6},\frac{\sqrt{6}}{9}$),$\overrightarrow{{O}_{3}{O}_{4}}$=($\frac{\sqrt{3}}{6},-\frac{1}{6},0$),
∴$\overrightarrow{{O}_{1}{O}_{2}}$$\overrightarrow{{O}_{3}{O}_{4}}$=$\frac{3}{108}-\frac{1}{36}+0=0$,
∴O1O2⊥O3O4,
∴直線O1O2與O3O4所成角的大小為$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點評 本題考查兩異面直線所成角的大小的求法,是基礎題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.某中學高三年級有400名學生參加月考,用簡單隨機抽樣的方法抽取了一個容量為50的樣本,得到數(shù)學成績的頻率分布直方圖如圖所示.
(1)求第四個小矩形的高;
(2)估計本校在這次統(tǒng)測中數(shù)學成績不低于120分的人數(shù);
(3)已知樣本中,成績在[140,150]內(nèi)的有兩名女生,現(xiàn)從成績在這個分數(shù)段的學生中隨機選取2人做學習交流,求恰好男生女生各有一名的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=2x+cosα-2-x+cosα,x∈R,且$f(1)=\frac{{3\sqrt{2}}}{4}$.
(1)若0≤α≤π,求α的值;
(2)當m<1時,證明:f(m|cosθ|)+f(1-m)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=xex+ex(e為自然對數(shù)的底)
(1)求曲線y=f(x)在點(1,f(1))處的切線方程
(2)求y=f(x)的極小值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1、F2是其左、右焦點,A是其上頂點,且∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)經(jīng)過橢圓C的右焦點F2作傾斜角為45°的直線l,交橢圓C于M,N兩點,且滿足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=lnx-x的單調(diào)遞減區(qū)間是( 。
A.(1,+∞)B.(0,1)C.(0,1),(-∞,0)D.(1,+∞),(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖所示,已知單位正方體ABCD-A′B′C′D′,E是正方形BCC′B′的中心.
(1)求AE與下底面所成角的大小;
(2)求異面直線AE與DD′所成的角的大小.
(理科)(3)求二面角E-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.將245°化為弧度是$\frac{49π}{36}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,則$|{\overrightarrow{BD}}|$的最大值為$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案