【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過右焦點(diǎn)且不垂直于坐標(biāo)軸, 的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn)

(I)證明:點(diǎn)在直線上;

(Ⅱ)當(dāng)四邊形是平行四邊形時(shí),求的面積.

【答案】見解析;(Ⅱ)

【解析】試題分析:(Ⅰ)設(shè)所在直線為: ,聯(lián)立方程組,由韋達(dá)定理得,得到,從而所在直線方程,聯(lián)立方程組解得,即可證得點(diǎn)在直線上.

(Ⅱ)由點(diǎn)的中點(diǎn),且四邊形是平行四邊形,即點(diǎn)的中點(diǎn),

由(Ⅰ)知的坐標(biāo),求得的值,得到,利用弦長(zhǎng)公式和兩點(diǎn)的距離公式分別求得 ,即可求得的面積.

試題解析:

(Ⅰ)易知,設(shè)所在直線為: , ,

聯(lián)立方程組,化簡(jiǎn)得

由韋達(dá)定理得, ,

,從而所在直線方程為

所在直線方程為,聯(lián)立兩直線方程解得.

所以點(diǎn)在直線上.

(Ⅱ)∵點(diǎn)的中點(diǎn),且四邊形是平行四邊形 ∴點(diǎn)的中點(diǎn)

由(Ⅰ)知 ,則

此時(shí)

.

從而.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】必修四第一章我們借助圓的對(duì)稱性學(xué)習(xí)了誘導(dǎo)公式,如在直觀上講單位圓中,當(dāng)兩個(gè)角的終邊關(guān)于軸對(duì)稱時(shí),這兩個(gè)角的正弦值相等;再如在單位圓中,當(dāng)兩個(gè)角的終邊關(guān)于原點(diǎn)中心對(duì)稱時(shí),這兩個(gè)角的正弦值互為相反數(shù).觀察這些誘導(dǎo)公式,可以發(fā)現(xiàn)它們都是特殊角與任意角的三角函數(shù)的恒等關(guān)系.我們?nèi)绻麑⑻厥饨菗Q為任意角,那么任意角的和(或差)的三角函數(shù)與,的三角函數(shù)會(huì)有什么關(guān)系呢?如果已知,的正弦余弦,能由此推出的正弦余弦嗎?下面是某高一學(xué)生在老師的指導(dǎo)下自行探究與角的正弦余弦之間的關(guān)系的部分過程,請(qǐng)你順著這位同學(xué)的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:

不妨令如圖,設(shè)單位圓與軸的正半軸相交于點(diǎn)軸的非負(fù)半軸為始邊作角它們的終邊分別與單位圓相交于點(diǎn)連接若把扇形繞著點(diǎn)旋轉(zhuǎn)角,則點(diǎn)分別與點(diǎn)重合. ……(未完待續(xù))

(提示一:任意一個(gè)圓繞著其圓心旋轉(zhuǎn)任意角后都與原來的圓重合,這一性質(zhì)叫做圓的旋轉(zhuǎn)對(duì)稱性)(提示二:平面上任意兩點(diǎn)間的距離公式)

1)完善上述探究過程;

2)利用(1)中的結(jié)論解決問題:已知是第三象限角,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某盒子內(nèi)裝有三種顏色的玻璃球,一位同學(xué)每次從中隨機(jī)拿出一個(gè)玻璃球,觀察顏色后再放回,重復(fù)了50次,得到的信息如下:觀察到紅色26次、藍(lán)色13.如果從這個(gè)盒子內(nèi)任意取一個(gè)玻璃球,估計(jì):

1)這個(gè)球既不是紅色也不是藍(lán)色的概率;

2)這個(gè)球是紅色或者是藍(lán)色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)列滿足:,,均在坐標(biāo)軸上,則向量()

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)拋物線的開口向 、對(duì)稱軸為直線 、頂點(diǎn)坐標(biāo)

2)當(dāng) 時(shí),函數(shù)有最 值,是 ;

3)當(dāng) 時(shí),的增大而增大;當(dāng) 時(shí),的增大而減小;

4)該函數(shù)圖象可由的圖象經(jīng)過怎樣的平移得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:

組:10,11,1213,1415,16

組:1213,15,1617,14,

假設(shè)所有病人的康復(fù)時(shí)間互相獨(dú)立,從兩組隨機(jī)各選1人,組選出的人記為甲,組選出的

人記為乙.

)求甲的康復(fù)時(shí)間不少于14天的概率;

)如果,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率;

)當(dāng)為何值時(shí),,兩組病人康復(fù)時(shí)間的方差相等?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“五四青年節(jié)”到來之際,啟東中學(xué)將開展一系列的讀書教育活動(dòng).為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級(jí)四個(gè)社團(tuán)中隨機(jī)抽取12名學(xué)生參加問卷調(diào)査.已知各社團(tuán)人數(shù)統(tǒng)計(jì)如下:

(1)若從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一個(gè)社團(tuán)的概率;

(2)在參加問卷調(diào)查的12名學(xué)生中,從來自三個(gè)社團(tuán)的學(xué)生中隨機(jī)抽取3名,用表示從社團(tuán)抽得學(xué)生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形, 平面 , 的交點(diǎn), 為棱上一點(diǎn).

(1)證明:平面平面;

(2)若平面,三棱錐的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查乘客的候車情況,公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成5組,如表所示:

組別

候車時(shí)間

人數(shù)

2

6

4

2

1

(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);

(2)若從上表第三、四組的6人中隨機(jī)抽取2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案