若復(fù)數(shù)z滿足z(1+i3)=1+i(i是虛數(shù)單位),則z=
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:把已知的等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡求值.
解答: 解:由z(1+i3)=1+i,得z(1-i)=1+i
z=
1+i
1-i
=
(1+i)(1+i)
(1-i)(1+i)
=
2i
2
=i
故答案為:i.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|-1<x<4},B={y||y|=x+1,x∈A},求∁UB,A∩B,A∪B,A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|1<x≤3},B={x|-1≤x<2},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|-3<x<2},N={x|1≤x≤3},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意實數(shù)x1,x2都有f(x1x2)=f(x1)+f(x2)成立,則f(0)=
 
,f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x-a+
5
2
,若存在x0∈[1,4],使f(x0)=0有解,則實數(shù)a的取值范圍是(  )
A、(-∞,2)
B、(0,
1
2
C、[
11
6
,+∞)
D、(-∞,
11
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校共有30至50歲之間的(包括30與不包括50)數(shù)學(xué)教師15人,其年齡分布莖葉圖如圖所示,從中選取3人參加支教.
(Ⅰ)若教師年齡分布的極差為15,求教師的平均年齡;
(Ⅱ)若選出的3人中有2名男教師1名女教師,將他們分配到兩所學(xué)校,每校至少有一人,則2名男教師分在同一所學(xué)校的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若一個數(shù)列每相鄰兩項的和都等于同一個常數(shù),則稱這個數(shù)列為等和數(shù)列,這個常數(shù)叫做公和.同樣道理,若一個數(shù)列每相鄰兩項的積都等于同一個常數(shù),則稱這個數(shù)列為等積數(shù)列,這個常數(shù)叫做公積,已知數(shù)列{an}是首項為1,公和為4的等和數(shù)列,前n項和為Sn,數(shù)列{bn}是首項為1,公積為4的等積數(shù)列,前n項和為
Tn,則
S2012
T2012
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知
a
=(1,0),
b
=(1,1),λ為何值時,
a
b
a
垂直;
(2)已知|
a
|=4,|
b
|=2,
a
b
的夾角為1200,求(
a
+2
b
)•(
a
-3
b
).

查看答案和解析>>

同步練習(xí)冊答案