【題目】已知函數(shù)是定義在R上的奇函數(shù),且當(dāng)時,.若關(guān)于x的不等式只有兩個整數(shù)解,則實數(shù)a的取值范圍為_______.
【答案】
【解析】
判斷當(dāng)時,函數(shù)的單調(diào)性,結(jié)合的值,這樣可以判斷函數(shù)在R上的單調(diào)性,最后利用奇函數(shù)的性質(zhì)和單調(diào)性,把化簡成關(guān)于的不等式,然后分類討論根據(jù)題意求出實數(shù)a的取值范圍.
當(dāng)時,,所以函數(shù)在時是單調(diào)遞減函數(shù),而,根據(jù)奇函數(shù)關(guān)于原點對稱可知:函數(shù)在R上是單調(diào)遞減函數(shù).
,
所以有.
當(dāng)時,,不符合題意,故舍去;
當(dāng)時,或,不符合題意;
當(dāng)時,若,即,不等式解集為空集,不符合題意;
若時,即時,不等式的解集為:,要想只有兩個整數(shù)解,只需;
若時,即時,不等式的解集為:,顯然沒有整數(shù)解,綜上:實數(shù)a的取值范圍為.
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)家發(fā)現(xiàn)某種特別物質(zhì)的溫度(單位:攝氏度)隨時間(時間:分鐘)的變化規(guī)律滿足關(guān)系式:(,).
(1)若,求經(jīng)過多少分鐘,該物質(zhì)的溫度為5攝氏度;
(2)如果該物質(zhì)溫度總不低于2攝氏度,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、為平面上的兩個定點,且,該平面上的動線段的端點、,滿足,,,則動線段所形成圖形的面積為( )
A.36B.60C.72D.108
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣axlnx.
(1)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(2)證明:對于a∈(0,e),函數(shù)f(x)在區(qū)間()上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個菱形,三角形PAD是一個等腰三角形,∠BAD=∠PAD=,點E在線段PC上,且PE=3EC.
(1)求證:AD⊥PB;
(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com