設(shè),如果把函數(shù)的圖象被兩條平行的直線,所截的一段近似地看作一條線段,則下列關(guān)系式中,的最佳近似表示式是
(A) (B)
(C) (D)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高考復(fù)習(xí)質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
請(qǐng)考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分。做答時(shí)用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。
(本小題滿分10分)選修4—1:幾何證明選講
如圖,⊙O是的外接圓,D是的中點(diǎn),BD交AC于E。
(I)求證:CD2=DE·DB。
(II)若O到AC的距離為1,求⊙O的半徑。
(本小題滿分10分)
選修4—4:作標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,M點(diǎn)坐標(biāo)為(0,2),直線與曲線C交于A,B兩點(diǎn)。
(I)寫出直線的普通方程與曲線C的直角坐標(biāo)方程;
(II)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|·|MB|的值。
(本小題滿分10分)選修4—5:不等式選講
設(shè)函數(shù)
(I)畫出函數(shù)的圖象;
(II)若對(duì)任意恒成立,求a-b的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年吉林省高考復(fù)習(xí)質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題
請(qǐng)考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分。做答時(shí)用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。
(本小題滿分10分)選修4—1:幾何證明選講
如圖,⊙O是的外接圓,D是的中點(diǎn),BD交AC于E。
(I)求證:CD2=DE·DB。
(II)若O到AC的距離為1,求⊙O的半徑。
(本小題滿分10分)
選修4—4:作標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(t為參數(shù)),曲線C的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,M點(diǎn)坐標(biāo)為(0,2),直線與曲線C交于A,B兩點(diǎn)。
(I)寫出直線的普通方程與曲線C的直角坐標(biāo)方程;
(II)線段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA|·|MB|的值。
(本小題滿分10分)選修4—5:不等式選講
設(shè)函數(shù)
(I)畫出函數(shù)的圖象;
(II)若對(duì)任意恒成立,求a-b的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省黃岡市武穴中學(xué)高考交流數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知軸上有一列點(diǎn),當(dāng)時(shí),點(diǎn)是把線段作等
分的分點(diǎn)中最靠近的點(diǎn),設(shè)線段的長(zhǎng)度分別為
,其中.
(Ⅰ)寫出;
(Ⅱ)證明:;
(III)設(shè)點(diǎn)(),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)
的圖象上,如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)
明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com