精英家教網 > 高中數學 > 題目詳情
20.設向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ,且$\overrightarrow a=({-2,1}),\overrightarrow a+2\overrightarrow b=({2,3})$,則cosθ=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

分析 由條件求得,$\overrightarrow$=$\frac{\overrightarrow{a}+2\overrightarrow-\overrightarrow{a}}{2}$ 的坐標,再根據cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$ 計算求得它的值.

解答 解:∵向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ,且$\overrightarrow a=({-2,1}),\overrightarrow a+2\overrightarrow b=({2,3})$,
∴$\overrightarrow$=$\frac{\overrightarrow{a}+2\overrightarrow-\overrightarrow{a}}{2}$=(2,1),
則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{-4+1}{\sqrt{5}•\sqrt{5}}$=-$\frac{3}{5}$,
故選:A.

點評 本題主要考查兩個向量坐標形式的運算,兩個向量的數量積的定義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

10.已知函數f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,則a的值為8.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.設x∈R,則“x>2”是“|x-1|>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知定義在R上的奇函數f(x)滿足:當x≥0時,f(x)=x3,若不等式f(-4t)>f(2m+mt2)對任意實數t恒成立,則實數m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知向量$\overrightarrow a\;,\;\overrightarrow b$是單位向量,$\overrightarrow a•\overrightarrow b=0$,若$|{\overrightarrow c-\overrightarrow a-\overrightarrow b}|=1$,則$|{\overrightarrow c}|$的最大值為( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.在(x-2)10展開式中,二項式系數的最大值為 a,含x7項的系數為b,則$\frac{a}$=( 。
A.$\frac{80}{21}$B.$\frac{21}{80}$C.$-\frac{21}{80}$D.$-\frac{80}{21}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.在△ABC中,若a=1,b=2,cosA=$\frac{2\sqrt{2}}{3}$,則sinB=(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知直線ax+2y+2=0與3x-y-2=0平行,則系數a=(  )
A.3B.-6C.-$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.下表是某地銀行連續(xù)五年的儲蓄存款(年底余額),假設儲蓄存款y關于年份x的線性回歸方程為 $\hat y=\hat bx+\hat a$,則$\hat b$=1.2.
($\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,其中1×5+2×6+3×7+4×8+5×10=120,12+22+32+42+52=55)
年份x12345
儲蓄存款y(千億元)567810

查看答案和解析>>

同步練習冊答案