若方程
3
sinx+cosx=a在[0,2π]上有兩個不同的實數(shù)解x1、x2,求a的取值范圍,并求x1+x2的值.
分析:設(shè)函數(shù)y1=
3
sinx+cosx,y2=a,在同一平面直角坐標(biāo)系中作出這兩個函數(shù)的圖象,應(yīng)用數(shù)形結(jié)合解答即可.
解答:解:設(shè)f(x)=
3
sinx+cosx=2sin(x+
π
6
),x∈[0,2π].
令x+
π
6
=t,則f(t)=2sint,且t∈[
π
6
,
13π
6
]
在同一平面直角坐標(biāo)系中作出y=2sint及y=a的圖象,結(jié)合函數(shù)的圖象可知
當(dāng)1<a<2和-2<a<1時,兩圖象有兩個交點,即方程
3
sinx+cosx=a在[0,2π]上有兩不同的實數(shù)解.
當(dāng)1<a<2時,t1+t2=π,
即x1+
π
6
+x2+
π
6
=π,
∴x1+x2=
3
;
當(dāng)-2<a<1時,t1+t2=3π,
即x1+
π
6
+x2+
π
6
=3π,
∴x1+x2=
3

綜上可得,a的取值范圍是(1,2)∪(-2,1).
當(dāng)a∈(1,2)時,x1+x2=
3

當(dāng)a∈(-2,1)時,x1+x2=
3
點評:本題主要考查了輔助角公式在三角函數(shù)的化簡中的應(yīng)用及方程的根與函數(shù)的交點的相互轉(zhuǎn)化,體現(xiàn)了數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
4-
y
2
 

對應(yīng)的曲線中存在“自公切線”的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線線f(x,y)=0(或y=f(x))的自公切線,下列方程的曲線:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切線的是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
3
sinx+cosx=a
在[0.2π]上有兩個不同的實數(shù)解,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高三(上)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省綏化九中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若在曲線f(x,y)=0(或y=f(x))上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0或y=f(x)的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
④|x|+1=
對應(yīng)的曲線中存在“自公切線”的有( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案