三棱錐的高為3,側棱長均相等且為,底面是等邊三角形,則這個三棱錐的體積為(   )
A.B.C.D.
D

試題分析:由題意知為正三棱錐,高為3,側棱長為,因此底面三角形的邊長為3,所以該三棱錐的體積為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知矩形是圓柱體的軸截面,分別是下底面圓和上底面圓的圓心,母線長與底面圓的直徑長之比為,且該圓柱體的體積為,如圖所示.

(1)求圓柱體的側面積的值;
(2)若是半圓弧的中點,點在半徑上,且,異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2。

(1)求證:CE∥平面PAB;
(2)求四面體PACE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知多面體中, 四邊形為矩形,,平面平面, 、分別為、的中點,且,.

(1)求證:平面
(2)求證:平面;
(3)設平面將幾何體分成的兩個錐體的體積分別為,,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分別為AC、AB的中點,將△AEF沿EF折起,使A′在平面BCEF上的射影O恰為EC的中點,得到圖(2).

(1)求證:EF⊥A′C;
(2)求三棱錐FA′BC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正方形ABCD的邊長為2,E、F分別為BC、DC的中點,沿AE、EF、AF折成一個四面體,使B、C、D三點重合,則這個四面體的體積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.

(1)求四棱錐的體積.
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,圖(2)中實線圍成的部分是長方體(圖(1))的平面展開圖,其中四邊形ABCD是邊長為1的正方形.若向虛線圍成的矩形內(nèi)任意拋擲一質(zhì)點.它落在長方體的平面展開圖內(nèi)的概率是,則此長方體的體積是________.

查看答案和解析>>

同步練習冊答案