17.已知函數(shù)f(x)=$\left\{\begin{array}{l}x(1+mx),x≥0\\ x(1-mx),x<0\end{array}$,若關(guān)于x的不等式f(x)>f(x+m)的解集為M,且[-1,1]⊆M,則實(shí)數(shù)m的取值范圍是(1-$\sqrt{2}$,0).

分析 由題意可得,當(dāng)m=0,顯然不滿足條件;在[-1,1]上,函數(shù)y=f(x-m)的圖象應(yīng)在函數(shù)y=f(x)的圖象的下方,

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}x(1+mx),x≥0\\ x(1-mx),x<0\end{array}$,
①若m=0,則不等式即f(x)>f(x ),顯然不成立.
②若m>0,函數(shù)f(x)=$\left\{\begin{array}{l}x(1+mx),x≥0\\ x(1-mx),x<0\end{array}$在R上是增函數(shù),如圖1所示:
由f(x)>f(x+m),可得x>x+m,m<0,故m無(wú)解.
③若m<0,函數(shù)y=f(x+m)的圖象是把函數(shù)y=f(x)的圖象向右平移-m個(gè)單位得到的,
由題意可得,當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x+m)的圖象在函數(shù) y=f(x)的圖象的下方,
如圖2所示:
只要f(-1+m)<f(-1)即可,即(-1+m)[1-m(-1+m)]<-1•(1+m),
即 m+2m2-m3<0,即 1+2m-m2>0,求得1-$\sqrt{2}$<m<1+$\sqrt{2}$,
綜合可得,1-$\sqrt{2}$<m<0,
故答案為:(1-$\sqrt{2}$,0).

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì)、不等式等知識(shí),考查數(shù)形結(jié)合思想、分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)(x>0)的導(dǎo)函數(shù)為f′(x),若xf′(x)+f(x)=ex,且f(1)=e,則( 。
A.f(x)的最小值為eB.f(x)的最大值為eC.f(x)的最小值為$\frac{1}{e}$D.f(x)的最大值為$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)M,N分別是曲線f(x)=-x3+x2(x<$\sqrt{e}$)與g(x)=alnx(x≥$\sqrt{e}$)上一點(diǎn),△MON是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是(0,$\frac{2}{e+1}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={x|$\frac{1}{4}$<2x-2<1},B={x|1-x2≤0},則A∩B等于( 。
A.{x|-1≤x≤1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.將函數(shù)y=sin2x-1的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式為y=cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=aln(x+b),g(x)=aex-1(其中a≠0,b>0),且函數(shù)f(x)的圖象在點(diǎn)A(0,f(0))處的切線與函數(shù)g(x)的圖象在點(diǎn)B(0,g(0))處的切線重合.
(1)求實(shí)數(shù)a,b的值;
(2)記函數(shù)φ(x)=xf(x-1),是否存在最小的正常數(shù)m,使得當(dāng)t>m時(shí),對(duì)于任意正實(shí)數(shù)x,不等式φ(t+x)<φ(t)•ex恒成立?給出你的結(jié)論,并說(shuō)明結(jié)論的合理性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合A={x|x>2},B={x|x<4},則A∩B=(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)z=1-i(i為虛線單位),$\overline z$是z的共軛復(fù)數(shù),則z•$\overline z$的實(shí)部為( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.現(xiàn)用一半徑為10$\sqrt{2}$cm,面積為100$\sqrt{2}$πcm2的扇形鐵皮制作一個(gè)無(wú)蓋的圓錐形容器(假定銜接部分及鐵皮厚度忽略不計(jì),且無(wú)損耗),則該容器的容積為$\frac{1000π}{3}$cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案