已知:f(x)=x2+ax+b,且{x|f(x)=x}={2},
(1)求a、b的值;
(2)若{x|f(x)≥2x+t}=R,求t的取值范圍.
分析:(1)問題可轉(zhuǎn)化為方程x2+(a-1)x+b=0有兩個(gè)相等的實(shí)根2,由此可求a、b的值;
(2){x|f(x)≥2x+t}=R,可轉(zhuǎn)化為x2-5x+4-t≥0恒成立,利用判別式可求t的取值范圍.
解答:解:(1)∵f(x)=x2+ax+b,且{x|f(x)=x}={2},
∴方程x2+(a-1)x+b=0有兩個(gè)相等的實(shí)根2,…(2分)
-
a-1
2
=2
,且22+(a-1)•2+b=0…(4分)
∴a=-3,b=4…(6分)
(如用其他方法可酌情給分)
(2)由題意得:x2-3x+4≥2x+t,即x2-5x+4-t≥0…(7分)
又因?yàn)閧x|f(x)≥2x+t}=R,所以x2-5x+4-t≥0恒成立,即△=25-4(4-t)≤0…(10分)
所以t≤-
9
4
…(12分)
點(diǎn)評(píng):本題考查方程的根,考查恒成立問題,考查學(xué)生等價(jià)轉(zhuǎn)化問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在(1,2)上是增函數(shù),g(x)在(0,1)上為減函數(shù),求f(x),g(x)的表達(dá)式;
(3)對(duì)于(2)中的f(x),g(x),求證:當(dāng)x>0時(shí),方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•宜春一模)已知方程f(x)=x2+ax+2b的兩根分別在(0,1),(1,2)內(nèi),則f(3)的取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項(xiàng)bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足cn=
nan-1
,是否存在正整數(shù)p,q(1<p<q),使得c1,cp,cq成等比數(shù)列?若存在,求出所有的p,q的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知函數(shù)f(x)=
-x2+1   ,x<1
log2x   ,x≥1
,若f(a)=1,則a=
0或2
0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知函數(shù)f(x)=x2+x,f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)若數(shù)列{an}滿足an+1=f'(an),且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=b,bn+1=f(bn).
(。┦欠翊嬖趯(shí)數(shù)b,使得數(shù)列{bn}是等差數(shù)列?若存在,求出b的值;若不存在,請(qǐng)說明理由;
(ⅱ)若b>0,求證:
n
i=1
bi
bi+1
1
b

查看答案和解析>>

同步練習(xí)冊(cè)答案