,,,且,那么的夾角為( )
A.150°
B.120°
C.60°
D.30°
【答案】分析:由向量垂直可得數(shù)量積為0,代入化簡可得,結(jié)合向量夾角的取值范圍可得答案.
解答:解:∵,∴=0,,即,
設(shè)向量,的夾角為θ,
則有,即1+2cosθ=0
解得,又θ∈[0,π],所以θ=120°
故選B
點(diǎn)評:本題考查向量夾角的求解,涉及數(shù)量積的運(yùn)算及夾角公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
是兩個(gè)不共線的非零向量 (t∈R)
(1)記
OA
=
a
,
OB
=t
b
,
OC
=
1
3
(
a
+
b
)
,那么當(dāng)實(shí)數(shù)t為何值時(shí),A、B、C三點(diǎn)共線?
(2)若|
a
|=|
b
|=1且
a
b
夾角為120°
,那么實(shí)數(shù)x為何值時(shí)|
a
-x
b
|
的值最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P的橫、縱坐標(biāo)均為整數(shù),則稱P是“整點(diǎn)”.已知直線l:
x
a
+
y
b
=1
與圓x2+y2=25有公共點(diǎn)且都是整點(diǎn),那么這樣的直線l共有
60
60
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
(2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進(jìn)一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶實(shí)驗(yàn)中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個(gè)命題:
①如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題;
②已知向量滿足,且,則的夾角為;
③若函數(shù)f(x+1)是奇函數(shù),f(x-1)是偶函數(shù),且f(0)=2,則f(2012)=2;
④已知函數(shù)是偶函數(shù),函數(shù),若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是(1,+∞).
其中正確命題的序號為   

查看答案和解析>>

同步練習(xí)冊答案