分析 (1)利用數(shù)量積的坐標(biāo)運(yùn)算與輔助角公式得到:sin($\frac{x}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$=0,從而可求f(x)的值;
(2)利用正弦定理求出A取值范圍,然后求出函數(shù)f(A)的取值范圍.
解答 解:(1)∵向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{4}$,cos$\frac{x}{4}$),$\overrightarrow{n}$=(-cos$\frac{x}{4}$,sin$\frac{x}{4}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴$\sqrt{3}$cos$\frac{x}{4}$sin$\frac{x}{4}$+cos2$\frac{x}{4}$=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$+$\frac{1}{2}$=0,
∴sin($\frac{x}{2}$+$\frac{π}{6}$)+1=0,
∴sin($\frac{x}{2}$+$\frac{π}{6}$)=-1,
∴f(x)=-1;
(2)因?yàn)椋?\sqrt{2}$a-c)cosB=bcosC,
由正弦定理得:($\sqrt{2}$sinA-sinC)cosB=sinBcosC,
即$\sqrt{2}$sinAcosB=sinBcosC+sinBsinC=sin(B+C),
又△ABC中A+B+C=π,
∴$\sqrt{2}$sinAcosB=sinA,
∵A,B∈(0,π),
∴cosB=$\frac{\sqrt{2}}{2}$,則B=$\frac{π}{4}$,
因此A+C=$\frac{3π}{4}$,于是A∈(0,$\frac{3π}{4}$),
由f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),得到:f(A)=2sin($\frac{A}{2}$+$\frac{π}{6}$),$\frac{π}{6}$<$\frac{A}{2}$+$\frac{π}{6}$<$\frac{13π}{24}$
故f(A)的取值范圍為(1,2].
點(diǎn)評(píng) 本題考查數(shù)量積的坐標(biāo)運(yùn)算,考查三角函數(shù)中的恒等變換應(yīng)用,突出考查輔助角公式與兩角和的余弦,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n | B. | 2n | C. | 3n | D. | 4n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com