【題目】已知函數(shù) .
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.
【答案】解:由已知得,f(x)的定義域?yàn)椋?,+∞).
(Ⅰ) ,.
令f'(x)>0,得x>1,令f'(x)<0,得0<x<1.
所以函數(shù)f(x)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞),
(Ⅱ)由xln(kx)﹣kx+1≤mx,
得 ,即m≥f(x)max .
由(Ⅰ)知,
(i)當(dāng)k≥2時(shí),f(x)在 上單調(diào)遞減,所以 ,所以m≥0;.
(ii)當(dāng)0<k≤1時(shí),f(x)在 上單調(diào)遞增,所以 ,
所以 ;
(iii)當(dāng)1<k<2時(shí),f(x)在 上單調(diào)遞減,在 上單調(diào)遞增,
所以 .
又 , ,
①若 ,即 ,所以1<k<2ln2,此時(shí) ,
所以 .
②若 ,即 ,所以2ln2≤k<2,此時(shí)f(x)max=0,所以m≥0
綜上所述,當(dāng)k≥2ln2時(shí),m≥0;
當(dāng)0<k<2ln2時(shí), .
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)問題轉(zhuǎn)化為m≥f(x)max , 通過討論k的范圍,求出f(x)的最大值,從而求出m的范圍即可.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在印度有一個(gè)古老的傳說:舍罕王打算獎(jiǎng)賞國(guó)際象棋的發(fā)明人——宰相宰相西薩班達(dá)依爾.國(guó)王問他想要什么,他對(duì)國(guó)王說:“陛下,請(qǐng)您在這張棋盤的第1個(gè)小格里,賞給我1粒麥子,在第2個(gè)小格里給2粒,第3小格給4粒,以后每一小格都比前一小格加一倍.請(qǐng)您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國(guó)王覺得這要求太容易滿足了,就命令給他這些麥粒.當(dāng)人們把一袋一袋的麥子搬來開始計(jì)數(shù)時(shí),國(guó)王才發(fā)現(xiàn):就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?下面是四位同學(xué)為了計(jì)算上面這個(gè)問題而設(shè)計(jì)的程序框圖,其中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,設(shè)傾斜角為的直線(為參數(shù))與曲線(為參數(shù))相交于不同的兩點(diǎn).
(1)若,求線段中點(diǎn)的坐標(biāo);
(2)若,其中,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,為線段的中點(diǎn),為線段上一點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)當(dāng)平面時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)的和,且Sn = (an -1)(n∈N*), 數(shù)列{bn }的通項(xiàng)公式bn = 4n+5.
①求證:數(shù)列{an }是等比數(shù)列;
②若d∈{a1 ,a2 ,a3 ,……}∩{b1 ,b2 ,b3 ,……},則稱d為數(shù)列{an }和{bn }的公共項(xiàng),按它們?cè)谠瓟?shù)列中的先后順序排成一個(gè)新的數(shù)列{dn },求數(shù)列{dn }的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),函數(shù)的圖象關(guān)于對(duì)稱,求函數(shù)的對(duì)稱軸.
(3)若圖象上有一個(gè)最低點(diǎn),如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個(gè)單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,則圓C的方程為( )
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計(jì)劃利用“神舟十號(hào)”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品甲(件) | 產(chǎn)品乙(件) | ||
研制成本與搭載費(fèi)用之和(萬(wàn)元/件) | 200 | 300 | 計(jì)劃最大資金額3000元 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計(jì)收益(萬(wàn)元/件) | 160 | 120 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x+)2+y2=16,點(diǎn)A(,0),Q是圓上一動(dòng)點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,設(shè)點(diǎn)M的軌跡為E.
(1)求軌跡E的方程;
(2)過點(diǎn)P(1,0)的直線交軌跡E于兩個(gè)不同的點(diǎn)A,B,△AOB(O是坐標(biāo)原點(diǎn))的面積S=,求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com