已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.
(Ⅰ)函數(shù)的表達(dá)式為
(Ⅱ)存在,使得點(diǎn)、三點(diǎn)共線,且
(Ⅲ)的最大值為

試題分析:(Ⅰ)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為,
 
∴切線的方程為:,
切線過點(diǎn)
,即, (1)
同理,由切線也過點(diǎn),得.(2)
由(1)、(2),可得是方程的兩根,
 ( * )

,
把( * )式代入,得,
因此,函數(shù)的表達(dá)式為
(Ⅱ)當(dāng)點(diǎn)共線時(shí),
,即
化簡(jiǎn),得
,.   (3)
把(*)式代入(3),解得
存在,使得點(diǎn)、三點(diǎn)共線,且
(Ⅲ)解法:易知在區(qū)間上為增函數(shù),
,

依題意,不等式對(duì)一切的正整數(shù)恒成立,

對(duì)一切的正整數(shù)恒成立.
,
,

由于為正整數(shù),
又當(dāng)時(shí),存在,對(duì)所有的滿足條件.
因此,的最大值為
解法:依題意,當(dāng)區(qū)間的長(zhǎng)度最小時(shí),
得到的最大值,即是所求值.
,長(zhǎng)度最小的區(qū)間為
當(dāng)時(shí),與解法相同分析,得
解得.           后面解題步驟與解法相同(略).
點(diǎn)評(píng):難題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值。不等式恒成立問題,常常轉(zhuǎn)化成求函數(shù)的最值問題。(III)小題,通過構(gòu)造函數(shù),研究函數(shù)的單調(diào)性、極值(最值),進(jìn)一步確定得到參數(shù)的范圍。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為10萬(wàn)元,每生產(chǎn)1千件該產(chǎn)品需另投入2.7萬(wàn)元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且
(Ⅰ)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該公司在這一產(chǎn)品的產(chǎn)銷過程中所獲利潤(rùn)最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其圖象為曲線,點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)點(diǎn)時(shí),的方程為,求實(shí)數(shù)的值;
(Ⅲ)設(shè)切線、的斜率分別為、,試問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于函數(shù)和區(qū)間D,如果存在,使,則稱是函數(shù)在區(qū)間D上的“友好點(diǎn)”.現(xiàn)給出兩個(gè)函數(shù)
,         ②,
           ④ , 
其中在區(qū)間上存在“友好點(diǎn)”的有( )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)
(1)記集合,則所對(duì)應(yīng)的的零點(diǎn)的取值集合為               .
(2)若______.(寫出所有正確結(jié)論的序號(hào))


③若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=
(Ⅰ)求函數(shù)y的最小正周期;
(Ⅱ)求函數(shù)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,
(1)若為奇函數(shù),求的值;
(2)若=1,試證在區(qū)間上是減函數(shù);
(3)若=1,試求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)處取最小值, 則=(  )
A.1+B.1+C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有下列命題中假命題的序號(hào)是                 
是函數(shù)的極值點(diǎn);
②三次函數(shù)有極值點(diǎn)的充要條件是
③奇函數(shù)在區(qū)間上單調(diào)遞減.
④若雙曲線的漸近線方程為,則其離心率為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案