已知Sn為數(shù)列{an}的前n項和,Sn=2n+n,則a4=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:直接利用a4=S4-S3求解答案.
解答: 解:在數(shù)列{an}中,
∵Sn=2n+n,
∴a4=S4-S3=24+4-(23+3)=9.
故答案為:9.
點評:本題考查數(shù)列遞推式,考查了由數(shù)列的前n項和求數(shù)列的項,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過去的2013年,我國多地區(qū)遭遇了霧霾天氣,引起口罩熱銷.某品牌口罩原來每只成本為6元.售價為8元,月銷售5萬只.
(1)據(jù)市場調(diào)查,若售價每提高0.5元,月銷售量將相應(yīng)減少0.2萬只,要使月總利潤不低于原來的月總利潤(月總利潤=月銷售總收入-月總成本),該口罩每只售價最多為多少元?
(2)為提高月總利潤,廠家決定下月進(jìn)行營銷策略改革,計劃每只售價x(x≥9)元,并投入
26
5
(x-9)萬元作為營銷策略改革費用.據(jù)市場調(diào)查,每只售價每提高0.5元,月銷售量將相應(yīng)減少
0.2
(x-8)2
萬只.則當(dāng)每只售價x為多少時,下月的月總利潤最大?并求出下月最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=2x-1在區(qū)間[0,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=
2x+m
x+2
在區(qū)間[2,9]上封閉,求實數(shù)m的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z)上封閉,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)對任意x,y∈R均有f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0,f(1)=-
2
3

(1)判斷并證明f(x)在R上的單調(diào)性;
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x-y≤0
0≤x+y≤20
0≤y≤15
,則2x+3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(x+1)+2,(a>0且a≠1)必過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個求50名學(xué)生數(shù)學(xué)平均分的程序,在橫線上應(yīng)填的語句為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任何一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對稱中心.請你探究函數(shù)f(x)=x3-3x2+3,猜想它的對稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
2cos80°-cos20°
sin20°
=
 

查看答案和解析>>

同步練習(xí)冊答案