9.已知集合A={0,1,2},B={1,m},若A∩B=B,則實數(shù)m的取值集合是( 。
A.{0}B.{2}C.{0,2}D.{0,1,2}

分析 由A∩B=B,得B⊆A,然后利用子集的概念求得m的值.

解答 解:∵A∩B=B,∴B⊆A.
當m=0時,B={1,0},滿足B⊆A.
當m=2時,B={1,2},滿足B⊆A.
∴m=0或m=2.
∴實數(shù)m的值為0或2.
故選:C.

點評 本題考查了交集及其運算,考查了子集的概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知等差數(shù)列{an}中,a2=6,a5=12.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Sn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設f(x)=$\frac{x+1}{x}+a1nx(x>0)$.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:0≤a≤1時,函數(shù)f(x)在(0,+∞)上沒有零點;
(3)設F(x)=f(x)-$\frac{1}{x}$(a>0,x>0).A(x1y1)B(x2,y2)、C(x3,y3)依次是函數(shù)F(x)的圖象上從左至右的三點. 證明:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.“|x-2|≤5”是“-3≤x≤7”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.$f(x)=\sqrt{2}sin({x+φ})-a+{e^{-x}}$,$φ∈({0,\frac{π}{2}})$,已知f(x)的圖象在(0,f(0))處的切線與x軸平行或重合.
(1)求φ的值;
(2)若對?x≥0,f(x)≤0恒成立,求a的取值范圍;
(3)利用如表數(shù)據(jù)證明:$\sum_{k=1}^{157}{sin\frac{kπ}{314}<106}$.
${e^{\frac{π}{314}}}$${e^{-\frac{π}{314}}}$${e^{\frac{78π}{314}}}$${e^{-\frac{78π}{314}}}$${e^{\frac{79π}{314}}}$${e^{-\frac{79π}{314}}}$
1.0100.9902.1820.4582.2040.454

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若變量x,y滿足$\left\{\begin{array}{l}x+y≤2\\ 2x-3y≤9\\ x≥0\end{array}\right.$,則x2+2x+y2的最大值是( 。
A.4B.9C.16D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{5-x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,則f[f(-3)]=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.小明、小剛、小紅等5個人排成一排照相合影,若小明與小剛相鄰,且小明與小紅不相鄰,則不同的排法有36種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)$f(x)=lnx+\sqrt{x}+a(x-1)+b(a,b∈R,a,b$為常數(shù))的圖象經(jīng)過點(1,0),且在點(1,0)處的切線與直線$y=-\frac{2}{3}x$垂直.
(Ⅰ)求a、b的值;
(Ⅱ)證明:當1<x<3時,$f(x)<\frac{9(x-1)}{x+5}$.

查看答案和解析>>

同步練習冊答案