已知雙曲線的兩個焦點分別為、,則滿足△的周長為的動點的軌跡方程為 (   )

A. B. C. D.

C

解析試題分析:根據(jù)已知雙曲線方程,運用公式可得它的兩個焦點分別為F1(0,-)、F2(0,).再根據(jù)△PF1F2的周長為6+2,結(jié)合橢圓的定義得到點P的軌跡是以F1、F2為焦點的橢圓,因為三角形三頂點不能共線,所以上、下頂點除外.由橢圓的定義求得橢圓的長半軸、短半軸分別為3和2.因此可得橢圓的標準方程,得到正確選項.
因為雙曲線,因此可知其兩個焦點分別為F1(0,-)、F2(0,).
因為△的周長為,,那么說明了動點的軌跡是以為焦點的橢圓,則由橢圓的定義得到,長軸長為6,長半軸為3,短半軸長為2,故可知P的軌跡方程為,同時去掉上下頂點。選C.
考點:本試題考查了一個軌跡問題的知識點。
點評:該試題著重考查了橢圓、雙曲線等圓錐曲線的標準方程,以及簡單的軌跡方程求法等知識點,屬于中檔題.那么求軌跡方程 方法一般是考慮定義法和直接法來求解的比較多。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

若直線mx- ny = 4與⊙O: x2+y2= 4沒有交點,則過點P(m,n)的直線與橢圓 的交點個數(shù)是 (  )

A.至多為1B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過雙曲線的左焦點作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點分別為A、B,若,則雙曲線的漸近線方程為(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個定點,且|F1F2|=2a(a是正常數(shù)),動點P滿足|PF1|+|PF2|=a2+1,則動點P的軌跡是(     )

A.橢圓 B.線段 C.橢圓或線段 D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)是曲線上的點,,則(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和拋物線y2 ="-8x" 的準線所圍成的三角形(含邊界與內(nèi)部).若點(x,y) ∈ D,則x+ y的最小值為

A.-1 B.0 C.1 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)是橢圓上的一點,為焦點,且,則 的面積為(   )

A. B. C. D.16 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

橢圓+=1(a>b>0)的離心率是,則的最小值為(    )

A. B.1 C. D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知拋物線的焦點為,點,在拋物線上,且, 則有    (   )

A. B.
C. D.

查看答案和解析>>

同步練習(xí)冊答案