若圓C與圓(x+2)2+(y-1)2=1關(guān)于原點對稱,則圓C的方程是(  ).
A.(x-2)2+(y+1)2=1B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1D.(x+1) 2+(y-2)2=1
A

試題分析:解:圓(x+2)2+(y-1)2=5的圓心A(-2,1),半徑等于  ,圓心A關(guān)于原點(0,0)對稱的圓的圓心B(2,-1),故對稱圓的方程為 (x-2)2+(y+1)2=5,故答案為 (x-2)2 +(y+1)2=5.故選A.
點評:本題考查求一個圓關(guān)于一個點的對稱圓的方程的求法,求出圓心A關(guān)于原點(0,0)對稱的圓的圓心B的坐標,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

-2x+my-2=0關(guān)于拋物線=4y的準線對稱,則m=_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓滿足以下三個條件:(1)圓心在直線上,(2)與直線相切,(3)截直線所得弦長為6。求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C經(jīng)過兩點,圓心在x軸上,則圓C的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于E點,F(xiàn)為CE上一點,且

(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,AB和AC分別是圓O的切線,且OC=3,AB=4, 延長AO與圓O交于D點,則△ABD的面積是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓 O 的割線 PBA 過  圓心 O,弦 CD 交 PA 于點F,且△COF∽△PDF,PB =" OA" = 2,則PF =             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O的弦AB交半徑OC于點D,若AD=4,BD=3,OC=4,則CD的長為______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、,則稱P優(yōu)于,如果中的點Q滿足:不存在中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣弧(   )

A. A    B.B     C. C    D.D

查看答案和解析>>

同步練習(xí)冊答案