【題目】一農(nóng)民有基本農(nóng)田2畝,根據(jù)往年經(jīng)驗,若種水稻,則每季每畝產(chǎn)量為400公斤;若種花生,則每季每畝產(chǎn)量為100公斤.但水稻成本較高,每季每畝240元,而花生只需80元,且花生每公斤5元,稻米每公斤賣3元.現(xiàn)該農(nóng)民手頭有400元,兩種作物各種多少,才能獲得最大收益?
【答案】設(shè)該農(nóng)民種畝水稻, 畝花生時,能獲得利潤元.則
即………………2分
即………………4分
作出可行域如圖陰影部分所示, ………………8分
作出基準(zhǔn)直線,在可行域內(nèi)平移直線,可知當(dāng)直線過點時,縱截距有最大值,…………………………10分
由解得,…………………………12分
故當(dāng), 時, 元,…………………………13分
答:該農(nóng)民種畝水稻, 畝花生時,能獲得最大利潤,最大利潤為1650元
【解析】試題分析:設(shè)出玉米和花生種植的畝數(shù)分別為x,y,則依題意得,收益z=960x+420y,同時列出x,y滿足的不等式組,利用線性規(guī)劃求出最大值即可。
試題解析:設(shè)該農(nóng)民種畝玉米, 畝花生時,能獲得利潤元。
則
即
作出可行域如圖所示,
故當(dāng), 時, 元
答:該農(nóng)民種畝玉米, 畝花生時,能獲得最大利潤,最大利潤為1650元。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣1≤x≤2},B={x|x2﹣4x>0,x∈R},則A∩(RB)=( )
A.[1,2]
B.[0,2]
C.[1,4]
D.[0,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2 100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數(shù) | 50 | 50 | a | 150 | b |
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:末位數(shù)字為9的整數(shù)能被3整除;
(2)p:有的素數(shù)是偶數(shù);
(3)p:至少有一個實數(shù)x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(1)求角A的大;
(2)若sinB+sinC= ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B、C三點滿足 = + .
(1)求證:A、B、C三點共線;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值為﹣ ,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com