已知三棱柱,平面,四邊形為正方形,分別為中點(diǎn).
(1)求證:∥面;
(2)求二面角的余弦值.
(1)見解析(2)

試題分析:(1)只要證出,由直線與平面平行的判定定理即可得證
(2)建立空間直角坐標(biāo)系,利用求二面角的公式求解
試題解析:(1)在、分別是、的中點(diǎn)


又∵平面,平面
∥平面
(2)如圖所示,建立空間直角坐標(biāo)系,
,,
,
,
平面的一個(gè)法向量
設(shè)平面的一個(gè)法向量為

.

∴二面角的余弦值是.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形與梯形所在的平面互相垂直,,,,的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面;
(3)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體中,點(diǎn)在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點(diǎn).

(1)求證:平面;
(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平面四邊形中,的中點(diǎn),,,
.將此平面四邊形沿折成直二面角,
連接,設(shè)中點(diǎn)為

(1)證明:平面平面;
(2)在線段上是否存在一點(diǎn),使得平面?若存在,請確定點(diǎn)的位置;若不存在,請說明理由.
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將邊長為2的正方形ABCD沿對角線BD折成一個(gè)直二面角,且EA⊥平面ABD,AE=.

(1)若,求證:AB∥平面CDE;
(2)求實(shí)數(shù)的值,使得二面角AECD的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點(diǎn),且CE=3DE.

(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點(diǎn),是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k的值為(    )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中,已知AB=2,AC=4,A1A=3.D是BC的中點(diǎn).

(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

同步練習(xí)冊答案