17.($\frac{4}{x}$)′=-$\frac{4}{{x}^{2}}$.

分析 根據(jù)函數(shù)的導數(shù)公式進行求解即可.

解答 解:($\frac{4}{x}$)′=-$\frac{4}{{x}^{2}}$,
故答案為:-$\frac{4}{{x}^{2}}$

點評 本題主要考查函數(shù)的導數(shù)的計算,要求熟練掌握掌握常見函數(shù)的導數(shù)公式,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.若x∈(-∞,2),則$\frac{{5-4x+{x^2}}}{2-x}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中正確命題的個數(shù)是( 。
(1)設f(x)=ax3+bx2+cx+d(a≠0),若f(x)存在極值,則一定既有極大值又有極小值;
(2)命題“若m=3,則橢圓$\frac{x^2}{4}+\frac{y^2}{m}$=1離心率為$\frac{1}{2}$”的逆命題;
(3)設z∈C,命題“若z為實數(shù),則z=$\overline{z}$”的否命題;
(4)設a,b∈R,命題“若ab=0,則復數(shù)z=a+bi為純虛數(shù)”的逆否命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設z=3x+4y,式中變量x,y滿足下列條件:$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤16}\\{-x+2y≤0}\\{x≥0,y≥0}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.給出下列四個命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②若函數(shù)y=2cos(ax-$\frac{π}{3}$)的最小正周期是π,則a=2;
③函數(shù)f(x)=sinxcosx-1的最小值為-$\frac{3}{2}$;
④函數(shù)y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C的中心在原點,對稱軸為坐標軸,左焦點為F1(-1,0),離心率為$\frac{1}{2}$.
(1)求橢圓C標準方程;
(2)分別以橢圓C的四個頂點作坐標軸的垂線,圍成如圖所示的矩形,A,B是所圍成的矩形在x上方的兩個頂點,若P,Q是橢圓C上兩個動點,直線OP,OQ與橢圓的另外交點分別為P1,Q1,且直線OP,OQ的斜率之積等于直線OA,OB的斜率之積,試求四邊形PQP1Q1的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題p:?x>0,x-lnx>0,則¬p是( 。
A.?x≤0,x-lnx≤0B.?x>0,x-lnx≤0C.?x≤0,x-lnx≤0D.?x>0,x-ln≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知$0<x<\frac{π}{2}$,$sin({x-\frac{π}{6}})=\frac{1}{3}$,則$cos({x-\frac{π}{6}})$=$\frac{2\sqrt{2}}{3}$,cosx=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C所對應的邊分別為a,b,c,且a2-(b-c)2=bc,cosAcosB=$\frac{sinA+cosC}{2}$.
(1)求角A和角B的大小;
(2)若f(x)=sin(2x+C),將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個單位后又向上平移了2個單位,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的解析式及單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案