【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是( )
A. f(﹣ )<f(﹣ )
B. f( )<f( )??
C.f(0)>2f( )
D.f(0)> f( )
【答案】A
【解析】解:構(gòu)造函數(shù)g(x)= ,
則g′(x)= = (f′(x)cosx+f(x)sinx),
∵對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函數(shù)g(x)在x∈(﹣ , )單調(diào)遞增,
則g(﹣ )<g(﹣ ),即 ,
∴ ,即 f(﹣ )<f(﹣ ),故A正確.
g(0)<g( ),即 ,
∴f(0)<2f( ),
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶準(zhǔn)備建一個(gè)水平放置的直四棱柱形儲水器(如圖),其中直四棱柱的高,兩底面是高為,面積為的等腰梯形,且,若儲水窖頂蓋每平方米的造價(jià)為100元,側(cè)面每平方米的造價(jià)為400元,底部每平方米的造價(jià)為500元.
(1)試將儲水窖的造價(jià)表示為的函數(shù);
(2)該農(nóng)戶如何設(shè)計(jì)儲水窖,才能使得儲水窖的造價(jià)最低,最低造價(jià)是多少元?(取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為1的正六邊形ABCDEF的邊上的一個(gè)動點(diǎn),設(shè) =x +y ,則x+y的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點(diǎn).
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法錯(cuò)誤的是
A. 是的最小值點(diǎn)
B. 函數(shù)有且只有1個(gè)零點(diǎn)
C. 存在正實(shí)數(shù),使得恒成立
D. 對任意兩個(gè)不相等的正實(shí)數(shù),若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=f(x)的圖象過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)f′(x)=6x﹣2,數(shù)列{an}前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,Tn是數(shù)列{bn}的前n項(xiàng)和,求當(dāng) 對所有n∈N*都成立m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若曲線與在公共點(diǎn)處有相同的切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若曲線與在公共點(diǎn)處有相同的切線,求證:點(diǎn)唯一;
(3)若, ,且曲線與總存在公切線,求:正實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com