在等比數(shù)列{an}中,an>0 (n∈N*) , 公比q∈(0 , 1) ,且a1a5+2a3a5+a2a8=25,又a3a5的等比中項為2 , bn=lo
gan2
 ,數(shù)列{bn}的前n項和為sn ,則當(dāng)
s1
1
+
s2
2
+
s3
3
+…+
sn
n
取最大值時n的值等于
.
______.
∵a1a5+2a3a5+a2a8=25,∴a32+2a3a5+a52=25
∵an>0,∴a3+a5=5,
∵a3與a5的等比中項為2,∴a3a5=4
∵q∈(0,1),∴a3>a5,∴a3=4,a5=1,
∴q=
1
2
,a1=16,
∴an=16×(
1
2
n-1=25-n,
又bn=log2an=5-n,∴bn+1-bn=-1,
∴{bn}是以4為首項,-1為公差的等差數(shù)列,
∴sn=
n(9-n)
2
,∴
sn
n
=
9-n
2
,
∴當(dāng)n≤8時,
sn
n
>0;當(dāng)n=9時,
sn
n
=0;當(dāng)n>9時,
sn
n
<0,
當(dāng)n=8或9時,
s1
1
+
s2
2
+…+
sn
n
最大.  
故答案為:8或9
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項和為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習(xí)冊答案