已知A∪B={0,1,2,3,4,5},A∩B={1,2,3,4,5},求集合A,B,并用Venn圖表示.
考點(diǎn):Venn圖表達(dá)集合的關(guān)系及運(yùn)算
專題:集合
分析:由已知A∪B={0,1,2,3,4,5},A∩B={1,2,3,4,5},可得A={1,2,3,4,5},B={0,1,2,3,4,5},或A={0,1,2,3,4,5},B={1,2,3,4,5},進(jìn)而可得滿足條件的Venn圖.
解答: 解:∵A∩B={1,2,3,4,5},
∴{1,2,3,4,5}∈A,或{1,2,3,4,5}∈B,
又∵A∪B={0,1,2,3,4,5},
∴0∈A,或0∈B,
故A={1,2,3,4,5},B={0,1,2,3,4,5},或A={0,1,2,3,4,5},B={1,2,3,4,5},
用Venn圖表示如下:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是Venn圖表達(dá)集合的關(guān)系及運(yùn)算,其中由已知分析出A={1,2,3,4,5},B={0,1,2,3,4,5},或A={0,1,2,3,4,5},B={1,2,3,4,5},是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={0,±1,±2},集合M={0},則∁UM=( 。
A、{±1,±2}
B、{0,±1,±2}
C、{0,±1}
D、{0,±2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的左、右兩個(gè)焦點(diǎn),A,B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到焦點(diǎn)F1,F(xiàn)2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P,Q兩點(diǎn),求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin(2x+
π
6
)的周期、單調(diào)遞減區(qū)間及當(dāng)x∈[0,
π
2
]時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如表所示:
PM2.5日均值
(微克/立方米)
[25,35](35,45](45,55](55,65](65,75](75,85]
頻數(shù)311113
(1)從這10天的PM2.5日均值監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果等腰直角△ABC中,∠C=90°,A點(diǎn)坐標(biāo)(2,1),B點(diǎn)坐標(biāo)(-1,-1),求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計(jì)算法求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
49×50
的值,寫出求此算法的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a7+a16=3,求a3+a13的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a∥平面α,直線a∥平面β,且α∩β=l,求證:a∥l.

查看答案和解析>>

同步練習(xí)冊(cè)答案