考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)正項(xiàng)數(shù)列{a
n}的前n項(xiàng)和S
n滿(mǎn)足
-(n
2+n-1)S
n-(n
2+n)=0,可得
(Sn-n2-n)(Sn+1)=0,S
n=n
2+n.利用遞推式即可得出.
(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式得出T
n,即可證明.
解答:
(1)解:∵正項(xiàng)數(shù)列{a
n}的前n項(xiàng)和S
n滿(mǎn)足
-(n
2+n-1)S
n-(n
2+n)=0,
∴
(Sn-n2-n)(Sn+1)=0,
∴S
n=n
2+n.
當(dāng)n≥2時(shí),
Sn-1=(n-1)2+(n-1),
∴a
n=S
n-S
n-1=n
2+n-[(n-1)
2+(n-1)]=2n.
當(dāng)n=1時(shí),a
1=S
1=2,也成立.
∴a
n=2n.
(2)證明:b
n=
=
,
數(shù)列{b
n}的前n項(xiàng)和為T(mén)
n=
+++…+
,
∴
Tn=
++…+
+,
∴
Tn=1+
++…+
-
=
-
=
2-,
∴T
n=
4-<4.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.