【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,下表是初賽成績(得分均為整數(shù),滿分為100分)的頻率分布表.

分組(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

0.16

17

19

0.38

合計

50

1

(Ⅰ)求頻率分布表中 , 的值;

(Ⅱ)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答3道判斷題,答對3道題獲得一等獎,答對2道題獲得二等獎,答對1道題獲得三等獎,否則不得獎.若某同學(xué)進(jìn)入決賽,且其每次答題回答正確與否均是等可能的,試列出他回答問題的所有可能情況,并求出他至少獲得二等獎的概率.

【答案】(1)=8, =0.34, =6, =0.12.(2)

【解析】試題分析:(1)利用頻率等于頻數(shù)除以總數(shù)得a,b;再根據(jù)總數(shù)求c,根據(jù)頻率和為1求d(2)利用枚舉法確定回答問題的所有可能情況(8個),再挑出獲得二等獎及其以上的可能情況(4個),最后根據(jù)古典概型概率公式求概率

試題解析:(Ⅰ) =8, =0.34, =6, =0.12.

(Ⅱ)用“對”表示回答該題正確,用“錯”表示回答該題錯誤,則所有可能的情況有:(對,對,對),(對,對,錯),(對,錯,對),(錯,對,對),(對,錯,錯),(錯,對,錯),(錯,錯,對),(錯,錯,錯),故他至少獲得二等獎的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx,(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a2x﹣a)有且只有一個根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是☉O的內(nèi)接四邊形,AB的延長線與DC的延長線交于點E,且CB=CE.

(Ⅰ)證明:∠D=∠E;

(Ⅱ)設(shè)AD不是☉O的直徑,AD的中點為M,且MB=MC,證明:△ADE為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(2,0), =(1,4).

(Ⅰ)若向量k+2平行,求實數(shù)k的值;

(Ⅱ)若向量k+2的夾角為銳角,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.

(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,直線

相切,且直線 與橢圓

相交于兩點, 為原點。

1)若直線過橢圓的左焦點,且與圓交于

兩點,且,求直線的方程;

2)如圖,若的重心恰好在圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,直線經(jīng)過點相交于、兩點.

(1)若,求證: 必為的焦點;

(2)設(shè),若點上,且的最大值為,求的值;

(3)設(shè)為坐標(biāo)原點,若,直線的一個法向量為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點.
(1)求的長;
(2)求cos()的值;
(3)求證A1B⊥C1M.

查看答案和解析>>

同步練習(xí)冊答案