【題目】已知函數(shù)f(x)=x2lnx﹣a(x2﹣1),a∈R,若當(dāng)x≥1時,f(x)≥0恒成立,則a的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0]
C.(﹣∞,1]
D.

【答案】D
【解析】解:由已知,即x≥1時,f(x)min>0,
f′(x)=x(2lnx+1﹣2a),x≥1,
當(dāng)1﹣2a≥0,即a≤ 時,f′(x)≥0恒成立,
∴f(x)單調(diào)增,
∴f(x)min=f(1)=0,即a≤ 時滿足f(x)≥0恒成立;
當(dāng)1﹣2a<0,即a> 時,由f′(x)=0,得x= >1,
∴x∈(1, )時,f(x)單調(diào)減,即x∈(1, )時,
∴f(x)<f(1)=0與題設(shè)矛盾,
即a> 時,不能滿足f(x)≥0恒成立,
綜上,所求a的取值范圍是a≤ ;
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線的交點到軸的距離為,過點軸的垂線, 上異于點的一點,以為直徑作圓.

(1)求的方程;

(2)若直線的另一個交點為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若,證明: 上存在唯一零點;

(2)設(shè)函數(shù),( 表示中的較小值),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的定義域:
(1)f(x)=log2
(2)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱柱ABC﹣A1B1C1的,底面邊長是側(cè)棱長2倍,D、E是A1C1、AC的中點,則下面判斷不正確的為(
A.直線A1E∥平面B1DC
B.直線AD⊥平面B1DC
C.平面B1DC⊥平面ACC1A1
D.直線AC與平面B1DC所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有l(wèi)nx> 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件,求圓的方程
(1)求經(jīng)過兩點 ,且圓心在y軸上的圓的方程;
(2)圓的的半徑為1,圓心與點(1,0)關(guān)于 對稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標(biāo)原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設(shè)兩條切線交于點M.
(1)求
(2)設(shè)直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.

查看答案和解析>>

同步練習(xí)冊答案