分析 分別取AB,CD的中點(diǎn)E,F(xiàn),連接相應(yīng)的線段,由條件可知,球心G在EF上,可以證明G為EF中點(diǎn),
求出球的半徑,再求球的表面積.
解答 解:分別取AB,CD的中點(diǎn)E,F(xiàn),
連接相應(yīng)的線段CE,ED,EF,
由條件,AB=CD=$\sqrt{6}$,
BC=AC=AD=BD=2,
可知△ABC與△ADB,
都是等腰三角形,
AB⊥平面ECD,∴AB⊥EF,
同理CD⊥EF,
∴EF是AB與CD的公垂線,
球心G在EF上,
可以證明G為EF中點(diǎn),(△AGB≌△CGD)
DE=$\sqrt{{2}^{2}{-(\frac{\sqrt{6}}{2})}^{2}}$=$\frac{\sqrt{10}}{2}$,DF=$\frac{\sqrt{6}}{2}$,EF=$\sqrt{{(\frac{\sqrt{10}}{2})}^{2}{-(\frac{\sqrt{6}}{2})}^{2}}$=1,
∴GF=$\frac{1}{2}$,
球半徑DG=$\sqrt{{(\frac{1}{2})}^{2}{+(\frac{\sqrt{6}}{2})}^{2}}$=$\frac{\sqrt{7}}{2}$,
∴外接球的表面積為4π×DG2=7π.
故答案為:7π.
點(diǎn)評(píng) 本題考查了球的內(nèi)接幾何體以及球的表面積問(wèn)題,也考查空間想象能力與計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{4}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com