已知四面體ABCD的六條棱長都是1,則直線AD與平面ABC的夾角的余弦值為______.
設(shè)D點(diǎn)底面ABC上的投影為E,則E為△ABC的中心
連接AE、DE,則∠DAE即為直線AD與平面ABC的夾角
∵四面體ABCD的六條棱長都是1,
∴AE=
3
3
,
則cos∠DAE=
AE
AD
=
3
3

故答案為:
3
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A、B、C是球O的球面上三點(diǎn),∠BAC=90°,AB=2,BC=4,球O的表面積為48π,則異面直線AB與OC所成角余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:
(i)EFA1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動(dòng)點(diǎn),N,E分別是AM,A1B1的中點(diǎn).
(1)求證:NE平面BB1C1C;
(2)當(dāng)M在CC1的什么位置時(shí),B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四面體ABCD的棱長為a,點(diǎn)O是△BCD的中心,點(diǎn)M是CD中點(diǎn).
(1)求點(diǎn)A到面BCD的距離;
(2)求AB與面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方體ABCD-A1B1C1D1,則直線AB與平面BDA1所成角的正弦值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AB=AD=4,BC=CD=
7
,點(diǎn)E為線段AD上的一點(diǎn).現(xiàn)將△DCE沿線段EC翻折到PAC,使得平面PAC⊥平面ABCE,連接PA,PB.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且點(diǎn)E為線段AD的中點(diǎn),求直線PE與平面ABCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,BC1與平面BDD1B1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分別為AC,AB的中點(diǎn),沿DE將△ADE折起,得到如圖所示的四棱錐A′-BCDE
(Ⅰ)在棱A′B上找一點(diǎn)F,使EF平面A′CD;
(Ⅱ)當(dāng)四棱錐A'-BCDE體積取最大值時(shí),求平面A′CD與平面A′BE夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案