已知數(shù)列{an}滿足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求證:數(shù)列是等差數(shù)列并求數(shù)列{an}的通項公式;
(2)設bn=anan+1,求證:b1+b2+…+bn< .

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,其前項和為,滿足.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項公式;
(2)設{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項和Sn最大時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(1)求數(shù)列的通項公式  (2)令,求數(shù)列前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

知數(shù)列{an}是首項為,公比為的等比數(shù)列,設bn+15log3ant,常數(shù)t∈N*.
(1)求證:{bn}為等差數(shù)列;
(2)設數(shù)列{cn}滿足cnanbn,是否存在正整數(shù)k,使ck,ck+1ck+2按某種次序排列后成等比數(shù)列?若存在,求k,t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知Sn是等比數(shù)列{an}的前n項和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若正數(shù)項數(shù)列的前項和為,首項,點在曲線上.
(1)求,
(2)求數(shù)列的通項公式;
(3)設,表示數(shù)列的前項和,若恒成立,求及實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列{an}滿足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在(a,b,c為常數(shù)),使數(shù)列{an+f(n)}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)若an是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案