【題目】在正方形中,邊長(zhǎng),的中點(diǎn)為,現(xiàn)將沿對(duì)角線翻折(如圖),則在翻折的過(guò)程中.下列說(shuō)法正確的是______.(填正確命題的序號(hào))
①直線與直線所成的角為(,不重合時(shí));
②三棱錐體積的最大值為;
③三棱錐外接球的表面積為;
④點(diǎn)運(yùn)動(dòng)形成的軌跡為橢圓的一部分.
【答案】①③
【解析】
對(duì)于①,取的中點(diǎn),連接,,得到,,,由線面垂直的判定定理得到平面,從而得到,可判讀其正確;對(duì)于②,利用三棱錐等體積轉(zhuǎn)換,,得到當(dāng)平面平面時(shí),體積最大,利用椎體體積公式求得結(jié)果,可判讀②是錯(cuò)誤的;對(duì)于③,根據(jù)幾何體特征,可得的中點(diǎn)為外接球的球心,確定出半徑,利用球的表面積公式求得結(jié)果,可判讀其正確;對(duì)于④,點(diǎn)的軌跡為圓的一部分,從而得到其是錯(cuò)誤的,從而得到正確答案.
①取的中點(diǎn),連接,,∴,,,∴平面,∴,①正確;
②,當(dāng)平面平面時(shí),三棱錐的體積最大,此時(shí),,②不正確;
③由①的中點(diǎn)為外接球的球心,,,③正確;
④點(diǎn)的軌跡為圓的一部分,圓心為上靠近的4等分點(diǎn),④不正確;
故答案是:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像過(guò)點(diǎn)和.
(1)求函數(shù)的解析式;
(2)若在上有解,求的最小值;
(3)記,,是否存在正數(shù),使得對(duì)一切均成立?若存在,求出的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個(gè),一堆 3 個(gè),要把積木一塊一塊的全部放到某個(gè)盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個(gè)單位,縱坐標(biāo)擴(kuò)大到原來(lái)的2倍得到函數(shù)的圖象,則下列關(guān)于函數(shù)的命題中正確的是( )
A.函數(shù)是奇函數(shù)B.的圖象關(guān)于直線對(duì)稱
C.在上是增函數(shù)D.當(dāng)時(shí),函數(shù)的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與重合的一個(gè)點(diǎn).
(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求異面直線與的所成角的大小;
(2)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于,兩點(diǎn),問(wèn)是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com