設(shè)數(shù)列{an},a1=,若以a1,a2,…,an為系數(shù)的二次方程:an-1x2-anx+1=0(n∈N*且n≥2)都有根α、β滿足3α-αβ+3β=1.
(1)求證:{an-}為等比數(shù)列;
(2)求an
(3)求{an}的前n項(xiàng)和Sn
【答案】分析:(1)根據(jù)韋達(dá)定理分別求得α+β和αβ代入3α-αβ+3β=1,進(jìn)而求得an=an-1+,進(jìn)而可推知為定值,原式得證.(2)先根據(jù)a1求得數(shù)列{an-}的首項(xiàng),再由(1)求得的公比,根據(jù)等比數(shù)列的通項(xiàng)公式進(jìn)而可得an
(3)再根據(jù)等比數(shù)列的求和公式,求得Sn
解答:(1)證明:∵α+β=,αβ=代入3α-αβ+3β=1得an=an-1+,
==為定值.
∴數(shù)列{an-}是等比數(shù)列.
(2)解:∵a1-=-=
∴an-=×(n-1=(n
∴an=(n+
(3)解:Sn=(+++)+=+=-
點(diǎn)評:本題主要考查了等比數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=
n
3
,n∈N*
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,an+1=an2-nan+1,n=1,2,3,…,
(1)求a2,a3,a4;
(2)猜想出{an}的一個(gè)通項(xiàng)公式并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1+2a2+22a3+…+2n-1an=
n
2
(n∈N*),通項(xiàng)公式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)設(shè)數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項(xiàng).
(1)設(shè)bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(2)寫出數(shù)列{an}的通項(xiàng)公式(不要求計(jì)算過程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…),則a2013=
 

查看答案和解析>>

同步練習(xí)冊答案