【題目】如圖,已知四棱錐P-ABCD的底面ABCD是平行四邊形,PA⊥平面ABCD.M是AD的中點,N是PC的中點.
(1)求證:MN∥平面PAB;
(2)若平面PMC⊥平面PAD,求證:CM⊥AD;
(3)若平面ABCD是矩形,PA=AB,求證:平面PMC⊥平面PBC.
【答案】(1)見解析(2)見解析(3)見解析
【解析】
(1)取PB的中點E,連接EN,AE,證明MN∥AE,即證MN∥平面PAB;(2)假設(shè)CM與AD不垂直,在平面ABCD內(nèi)過M作AD的垂線,交BC于Q,連接PQ,MQ,證明平面PMQ⊥平面PAD,顯然這與平面PMC⊥平面PAD矛盾.故原題得證;(3)先證明MN⊥平面PBC,即證平面PMC⊥平面PBC.
證明:(1)取PB的中點E,連接EN,AE.
∵E,N分別是PB,PC的中點,∴ENBC,ENBC,
∵M是AD的中點,四邊形ABCD是平行四邊形,
∴AMBC ,AMBC,
∴ENAM,ENAM,∴四邊形AMNE是平行四邊形,
∴MN∥AE,
又MN平面PAB,AE平面PAB,
∴MN∥平面PAB.
(2)假設(shè)CM與AD不垂直,在平面ABCD內(nèi)過M作AD的垂線,交BC于Q,連接PQ,MQ,
∵PA⊥平面ABCD,MQ平面ABCD,
∴PA⊥MQ,又AD⊥MQ,PA∩AD=A,
∴MQ⊥平面PAD,又MQ平面PMQ,
∴平面PMQ⊥平面PAD,
顯然這與平面PMC⊥平面PAD矛盾.
故假設(shè)不成立,∴CM⊥AD.
(3)∵四邊形ABCD是矩形,∴AD⊥AB,
∵PA⊥平面ABCD,AD平面ABCD,
∴PA⊥AD,又PA∩AB=A,
∴AD⊥平面PAB,∴AD⊥AE,
由(1)可知四邊形AMNE是平行四邊形,
∴四邊形AMNE是矩形,
∴MN⊥EN,
又AM=MD,PA=AB=CD,∠PAM=∠MDC=90°,
∴△PMA≌△CMD,
∴PM=CM,又N是PC的中點,
∴MN⊥PC,
又PC∩EN=N,PC平面PBC,EN平面PBC,
∴MN⊥平面PBC,又MN平面PMC,
∴平面PMC⊥平面PBC.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( 。
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,點P(2,0).
(I)求橢圓C的短軸長與離心率;
( II)過(1,0)的直線與橢圓C相交于M、N兩點,設(shè)MN的中點為T,判斷|TP|與|TM|的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關(guān)注程度,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查, 經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11
關(guān)注 | 不關(guān)注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認為關(guān)注“一帶一路”是否和年齡段有關(guān)?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1-(a>0且a≠1)是定義在(-∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)證明:函數(shù)f(x)在定義域(-∞,+∞)內(nèi)是增函數(shù);
(3)當x∈(0,1]時,tf(x)≥2x-2恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取名學生的數(shù)學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com