方程,化簡(jiǎn)后為

[  ]

A.y=2

B.x=2

C.x+y=2

D.x-y=2

答案:B
解析:

方程的幾何意義是點(diǎn)(x,y)到原點(diǎn)與到(4,0)的距離相等,故點(diǎn)(x,y)在原點(diǎn)與(4,0)的中垂線上.∴x=2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•臺(tái)州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(-3,4),且法向量為
n
=(1,-2)
的直線(點(diǎn)法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0. 類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(3,4,5),且法向量為
n
=(2,1,3)
的平面(點(diǎn)法式)方程為
2x+y+3z-21=0
2x+y+3z-21=0
(請(qǐng)寫出化簡(jiǎn)后的結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)的軌跡方程的方法,可以求出過(guò)點(diǎn)A(2,1)且法向量為
n
=(-1,2)的直線
(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡(jiǎn)后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點(diǎn)法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請(qǐng)寫出化簡(jiǎn)后的結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三第二次五校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

平面內(nèi)與直線平行的非零向量稱為直線的方向向量,與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)且法向量為的直線(點(diǎn)法式)方程為,化簡(jiǎn)后得.則在空間直角坐標(biāo)系中,平面經(jīng)過(guò)點(diǎn),且法向量為的平面(點(diǎn)法式)方程化簡(jiǎn)后的結(jié)果為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:填空題

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中利用動(dòng)點(diǎn)軌跡的方法,可以求出過(guò)點(diǎn)且法向量的直線(點(diǎn)法式)方程為化簡(jiǎn)后得;類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)且法向量為的平面(點(diǎn)法式)方程為                               (請(qǐng)寫出化簡(jiǎn)后的結(jié)果).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案