精英家教網 > 高中數學 > 題目詳情
已知AB是橢圓的長軸,若把該長軸2010等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點,設左焦點為,則=       .
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的左右焦點分別為F1、F2,點P在橢圓C上,且PF1⊥F1F2, |PF1|=,  |PF2|=.  
(I)求橢圓C的方程;
(II)若直線L過圓的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩個焦點為在橢圓上,且
.
(1)求橢圓方程;
(2)若直線過圓的圓心,交橢圓兩點,且關于點對稱,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若點是以為焦點的橢圓上一點,
,,則此橢圓的離心率

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(16分)在平面直角坐標系中,如圖,已知橢圓的左右頂點為A,B,右頂點為F,設過點T()的直線TA,TB與橢圓分別交于點M,,其中m>0,

①設動點P滿足,求點P的軌跡
②設,求點T的坐標
③設,求證:直線MN必過x軸上的一定點
(其坐標與m無關)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知P是橢圓上任一點,F1、F2為橢圓的兩焦點,若
SPF1F2 =                      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

以雙曲線的右焦點為圓心,且被其漸近線截得的弦長為的圓的方程為                 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)

已知橢圓,與直線相交于兩點,且,為坐標原點.
(Ⅰ)求的值;
(Ⅱ)若橢圓長軸長的取值范圍是,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知以橢圓的右焦點F為圓心,a為半徑的圓與橢圓的右準線交于不同的兩點,則該橢圓的離心率的取值范圍是                                                              (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案