【題目】已知函數(shù)f(x)=x3+2x2﹣ax+1在區(qū)間(﹣1,1)上恰有一個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是

【答案】﹣1≤a<7

【解析】

試題分析首先利用函數(shù)的導(dǎo)數(shù)與極值的關(guān)系求出a的值,由于函數(shù)f(x)=x3+2x2﹣ax+1在區(qū)間(﹣1,1)上恰有一個(gè)極值點(diǎn),所以f′(﹣1)f′(1)<0,進(jìn)而驗(yàn)證a=﹣1與a=7時(shí)是否符合題意,即可求答案.

解:由題意,f′(x)=3x2+4x﹣a,

當(dāng)f′(﹣1)f′(1)<0時(shí),函數(shù)f(x)=x3+2x2﹣ax+1在區(qū)間(﹣1,1)上恰有一個(gè)極值點(diǎn),

解得﹣1<a<7,

當(dāng)a=﹣1時(shí),f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,

當(dāng)a=7時(shí),f′(x)=3x2+4x﹣7=0在(﹣1,1)上無實(shí)根,

則a的取值范圍是﹣1≤a<7,

故答案為﹣1≤a<7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由正整數(shù)構(gòu)成的數(shù)表,用表示第行第個(gè)數(shù)(). 此表中,每行中除首尾兩數(shù)外,其他各數(shù)分別等于其“肩膀”上的兩數(shù)之和.

(1)寫出數(shù)表的第6行(從左至右依次列出);

(2)設(shè)第行的第二個(gè)數(shù)為,求

(3)令,記為數(shù)列項(xiàng)和,求的最大值,并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對(duì)邊分別為,且的面積,向量.

(Ⅰ)求大。

(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S3a4+4,a2,a6a18成等比數(shù)列

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和,對(duì)任意,都有為常數(shù))

(1)當(dāng)時(shí),求

(2)當(dāng)時(shí),

(。┣笞C:數(shù)列是等差數(shù)列;

(ⅱ)若對(duì)任意,必存在使得,已知,且,

求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )
A. 的充分不必要條件
B.若命題 ,則
C.線性相關(guān)系數(shù) 的絕對(duì)值越接近1,表示兩變量的相關(guān)性越強(qiáng)
D.用頻率分布直方圖估計(jì)平均數(shù),可以用每個(gè)小矩形的高乘以底邊中點(diǎn)橫坐標(biāo)之和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 .
(1)將曲線 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為 ,直線l與曲線C的交點(diǎn)為A,B,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù) 的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個(gè)單調(diào)遞減區(qū)間為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角,,的對(duì)邊,滿足

(1)求的大小;

(2)若, ,C角最小,求的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案