2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\{x^2}+2{y^2}≤1\end{array}\right.$,則z=4x-y的最小值為$-\frac{5}{2}$.

分析 由約束條件畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求最小值.

解答 解:約束條件對(duì)應(yīng)的區(qū)域如圖:z=4x-y變形為y=4x-z,當(dāng)此直線經(jīng)過(guò)圖中最左側(cè)點(diǎn)時(shí),z最小,由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y=0}\end{array}\right.$得到(-$\frac{1}{2}$,$\frac{1}{2}$),所以最小值為$4×(-\frac{1}{2})-\frac{1}{2}=-\frac{5}{2}$;
故答案為:$-\frac{5}{2}$

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題;正確畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求最值是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合U={x|y=$\sqrt{x}$},A={x|3≤2x-1<5},則∁UA=( 。
A.(0,2)B.[0,2)∪[3,+∞)C.[1,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.有三個(gè)數(shù)成等比數(shù)列,它們的積為27,它們的和為13.求這三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=x3-x2+2x,則( 。
A.函數(shù)f(x)無(wú)極值點(diǎn)B.x=1為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)D.x=2為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知二次函數(shù)f(x)=x2-ax+3,且對(duì)任意的實(shí)數(shù)x都有f(4-x)=f(x)成立.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的值域;
(3)要得到函數(shù)y=x2的圖象只需要將二次函數(shù)y=f(x)的圖象做怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.直線l過(guò)點(diǎn)P(-2,1).
(1)若直線l與直線x+2y=1平行,求直線l的方程;
(2)若直線l與直線x+2y=1垂直,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)f(x)是定義在(-∞,+∞)上的函數(shù),對(duì)一切x∈R均有f(x)+f(x+3)=0,且當(dāng)-1<x≤1時(shí),f(x)=2x-3.
(1)求f(x)的周期;
(2)求當(dāng)2<x≤4時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=|2x-2|-m有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.本來(lái)住校的小明近期“被”走讀,某天中午上學(xué)路上,一開(kāi)始慢悠悠,中途又進(jìn)甜品店買了杯飲料,喝完飲料出來(lái)發(fā)現(xiàn)快要遲到了,于是一路狂奔,還好,終于在規(guī)定的時(shí)間內(nèi)進(jìn)了校門,奈何汗?jié)窳艘律眩敲磫?wèn)題來(lái)了:若圖中的縱軸表示小明與校門口的距離,橫軸表示出發(fā)后的時(shí)間,下面四個(gè)圖形中,較符合小明這次上學(xué)經(jīng)歷的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案