在下列區(qū)間中,函數(shù)f(x)=e-x-4x-3的零點所在的區(qū)間為(  )
分析:計算f(-
1
2
)和f(-
1
4
)的值,根據(jù)f(-
1
2
)f(-
1
4
)<0,可得函數(shù)f(x)=e-x-4x-3的零點所在的區(qū)間.
解答:解:∵連續(xù)函數(shù)f(x)=e-x-4x-3,f(-
1
2
)=
e
+2-3=
e
-1>0,
f(-
1
4
)=
4e
+1-3=
4e
-2<
416
-2=0,
故f(-
1
2
)f(-
1
4
)<0,故函數(shù)f(x)=e-x-4x-3的零點所在的區(qū)間為 (-
1
2
,-
1
4
)
,
故選B.
點評:本題考查函數(shù)零點的定義以及函數(shù)零點判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在下列區(qū)間中,函數(shù)f(x)=3x-x2有零點的區(qū)間是( 。
A、[0,1]B、[1,2]C、[-2,-1]D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列區(qū)間中,函數(shù)f(x)=x3-3x+1的零點所在的區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex+x-2,在下列區(qū)間中含有函數(shù)f(x)的零點是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•東城區(qū)一模)已知函數(shù)f(x)=(
1
2
)x-x
1
3
,那么在下列區(qū)間中含有函數(shù)f(x)零點的為( 。

查看答案和解析>>

同步練習冊答案