點P在直徑為2的球面上,過P兩兩垂直的3條弦,若其中一條弦長是另一條的2倍,則這3條弦長之和的最大值是
 
分析:設(shè)三條弦長分別為x,2x,y,求出長方體的對角線的長,用橢圓的參數(shù)方程表示x,y,推出3條弦長之和的表達式,通過三角函數(shù)的化簡輔助角公式,求出最大值.
解答:解:設(shè)三條弦長分別為x,2x,y,則:x2+(2x)2+y2=4,即:5x2+y2=4,設(shè)
5
2
x=sinθ,  
1
2
y=cosθ
,則這3條弦長之和=3x+y=
6
5
sinθ +2cosθ
=
2
70
5
sin(θ+φ),其中tanφ=
5
3
,所以它的最大值為:
2
70
5

故答案為:
2
70
5
點評:本題是中檔題,考查球的內(nèi)接多面體的就是問題,三角函數(shù)的化簡與求值,是綜合題目,考查計算能力,空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.

      ⑴求證:PB⊥平面AFE;

      ⑵若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市任巖松中學(xué)高二(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年陜西省西安一中高二(上)期末數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

同步練習(xí)冊答案