已知函數(shù),其中為實(shí)數(shù).
(Ⅰ) 若處取得的極值為,求的值;
(Ⅱ)若在區(qū)間上為減函數(shù),且,求的取值范圍.

(1)無極值;(2),或

解析試題分析:(1)由題意假設(shè)此時(shí)所以無極值
(2)設(shè),則有,
設(shè),令解得
當(dāng)時(shí)為增函數(shù),當(dāng)時(shí)為減函數(shù)
當(dāng)時(shí),取得極大值,當(dāng)時(shí),取得極小值,且函數(shù)有兩個(gè)公共點(diǎn)所以,或
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):中檔題,利用導(dǎo)數(shù)研究函數(shù)的極值,一般遵循“求導(dǎo)數(shù)、求駐點(diǎn)、研究導(dǎo)數(shù)的正負(fù)、確定極值”,利用“表解法”,清晰易懂。研究曲線有公共點(diǎn)的問題,往往利用導(dǎo)數(shù)研究函數(shù)圖象的大致形態(tài)加以解答。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的極小值;
(Ⅱ)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+a x.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于或等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)任意的正整數(shù),不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中的導(dǎo)函數(shù).
(1)對(duì)滿足的一切的值,都有,求實(shí)數(shù)的取值范圍;
(2)設(shè),當(dāng)實(shí)數(shù)在什么范圍內(nèi)變化時(shí),函數(shù)的圖象與直線只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)和“偽二次函數(shù)” .
(Ⅰ)證明:只要,無論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
(Ⅱ)在同一函數(shù)圖像上任意取不同兩點(diǎn)A(),B(),線段AB中點(diǎn)為C(),記直線AB的斜率為k.
(1)對(duì)于二次函數(shù),求證
(2)對(duì)于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(Ⅰ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
若函數(shù)處取得極值,試求的值;
在(1)的條件下,當(dāng)時(shí),恒成立,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案