【題目】根據條件,求下列曲線的方程.
(1)已知兩定點,曲線上的點到距離之差的絕對值為,求曲線的方程;
(2)在 軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為的橢圓的標準方程.
【答案】(1)雙曲線的標準方程為;(2).
【解析】試題分析:(1)根據雙曲線的定義和條件可得,再求得,由兩定點坐標得雙曲線焦點在軸上,根據雙曲線標準方程寫出雙曲線的方程; (2)因為焦距為,所以。在 軸上的一個焦點與短軸兩端點的連線互相垂直,再由橢圓的對稱性可得在 軸上的一個焦點與短軸兩端點構成的三角形為等腰直角三角形,所以在 軸上的一個焦點與短軸的一個端點、原點構成的三角形也為直角三角形,所以。,因為焦點在軸上,所以橢圓的方程為。
試題解析:(1)由雙曲線的定義可知,該曲線是焦點在雙曲線,
設雙曲線的標準方程為 ,根據已知得 即.
由求得.所以雙曲線的標準方程為.
(2)設橢圓的標準方程為 .
由已知得 ,所以 .
故所求橢圓的標準方程為 .
科目:高中數學 來源: 題型:
【題目】某種出口產品的關稅稅率,市場價格(單位:千元)與市場供應量(單位:萬件)之間近似滿足關系式:,其中、均為常數.當關稅稅率為時,若市場價格為5千元,則市場供應量約為1萬件;當關稅稅率為時,若市場價格為7千元,則市場供應量約為2萬件.
(1)試確定、的值;
(2)市場需求量(單位:萬件)與市場價格近似滿足關系式:.當時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.
(1)證明:DB=DC;
(2)設圓的半徑為1,BC=3,延長CE交AB于點F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).
(1)若設休閑區(qū)的長和寬的比=x(x>1),求公園ABCD所占面積S關于x的函數S(x)的解析式;
(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長和寬該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖放置的邊長為2的正三角形沿軸滾動, 設頂點的縱坐標與橫坐標的函數關系式是, 有下列結論:
①函數的值域是;②對任意的,都有;
③函數是偶函數;④函數單調遞增區(qū)間為.
其中正確結論的序號是________. (寫出所有正確結論的序號)
說明:
“正三角形沿軸滾動”包括沿軸正方向和沿軸負方向滾動. 沿軸正方向滾動指的是先以頂點為中心順時針旋轉, 當頂點落在軸上時, 再以頂點為中心順時針旋轉, 如此繼續(xù). 類似地, 正三角形可以沿軸負方向滾動.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(Ⅰ)若函數在處的切線方程為,求的值;
(Ⅱ)當時,若不等式恒成立,求的取值范圍;
(Ⅲ)當時,若方程在上總有兩個不等的實根, 求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com