Processing math: 34%
1.如圖,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求證:平面ABB1A1⊥平面ACC1A1;
(2)求二面角A-BB1-C的正切值的大�。�

分析 (1)推導(dǎo)出AC⊥AB,A1B⊥AC,從而AC⊥平面ABB1A1,由此能證明平面ABB1A1⊥平面ACC1A1
(2)以B為原點(diǎn),BA為x軸,在平面ABC中過(guò)B作BA的垂線為y軸,BA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BB1-C的正切值.

解答 證明:(1)在△ABC中,∵AB2+AC2=BC2,∴AC⊥AB,…(2分)
又∵A1B⊥AC且A1B、AC是面ABB1A1內(nèi)的兩條相交直線,
∴AC⊥平面ABB1A1,..…(4分)
又AC?平面ACC1A1
∴平面ABB1A1⊥平面ACC1A1.…(5分)
解:(2)在△ABC中,∵A1B2+AB2=AA12,∴A1B⊥AB,
又∵A1B⊥AC且AB、AC是面ABC內(nèi)的兩條相交直線,∴A1B⊥面ABC,…(7分)
∴以B為原點(diǎn),BA為x軸,在平面ABC中過(guò)B作BA的垂線為y軸,BA1為z軸,
建立如圖所示的空間直角坐標(biāo)系,
則B(0,0,0),A(12,0,0),C(12,5,0),A1(0,0,5),
BB1=AA1,得B1(-12,0,5),…(8分)
取平面ABB1A1的一個(gè)法向量n1=(0,1,0),
設(shè)平面BCC1B1的一個(gè)法向量n2=xyz,
{n2BB1=0n2BC=0,得 {12x+5z=012x+5y=0.
取x=5,則n2=51212…(10分)
∴cos<n1n2>=n1n2|n1||n2|=-12313
設(shè)A-BB1-C的大小為θ,
cosθ=\frac{12}{{\sqrt{313}}},tanθ=\frac{13}{12}
∴二面角A-BB1-C的正切值的大小為\frac{13}{12}…(12分)

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的正切值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知P是雙曲線\frac{x^2}{9}-\frac{y^2}{16}=1右支上任意一點(diǎn),M是圓(x+5)2+y2=1上任意一點(diǎn),設(shè)P到雙曲線的漸近線的距離為d,則d+|PM|的最小值為(  )
A.8B.9C.\frac{47}{5}D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)于非零復(fù)數(shù)a,b,c,有以下七個(gè)命題:
①a+\frac{1}{a}≠0;
②若a=-\overline{a}\overline{a}為a的共軛復(fù)數(shù),則a為純虛數(shù);
③(a+b)2=a2+2ab+b2
④若a2=ab,則a=b;
⑤若|a|=|b|,則a=±b;
⑥若a2+b2+c2>0,則a2+b2>-c2
⑦若a2+b2>-c2,則a2+b2+c2>0.
其中,真命題的個(gè)數(shù)為( �。�
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,\frac{xf′(x)-f(x)}{{x}^{2}}>0(x>0),則不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=\frac{lna+lnx}{x}在[1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是( �。�
A.a≤eB.0<a≤eC.a≥eD.0<a<\frac{1}{e}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示的多面體是由一個(gè)以四邊形ABCD為地面的直四棱柱被平面A1B1C1D1所截面成,若AD=DC=2,AB=BC=2\sqrt{3},∠DAB=∠BCD=90°,且AA1=CC1=\frac{3}{2};
(1)求二面角D1-A1B-A的大�。�
(2)求此多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求平面BEF和平面ABCD所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在某種產(chǎn)品表面進(jìn)行腐蝕性試驗(yàn),得到腐蝕深度y與腐蝕時(shí)間x之間對(duì)應(yīng)的一組數(shù)據(jù):
時(shí)間x(s)23456
深度y(μm)2.23.85.56.57.0
(1)在所給的坐標(biāo)系中畫(huà)出散點(diǎn)圖;
(2)如果y對(duì)x有線性相關(guān)關(guān)系,請(qǐng)用最小二乘法求y關(guān)于x的回歸直線方程;
(3)估計(jì)x=12時(shí),腐蝕深度約是多少?
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x
參考數(shù)據(jù):22+32+42+52+62=90,2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3.

查看答案和解析>>

同步練習(xí)冊(cè)答案