已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

解:(1)f′(x)=x2-4=(x+2)(x-2),
當(dāng)x<-2時(shí),f′(x)>0,f(x)單調(diào)遞增;當(dāng)-2<x<2時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>2時(shí),f′(x)>0,f(x)單調(diào)遞增.
所以當(dāng)x=-2時(shí),f(x)有極大值f(-2)=-+8+4=,
當(dāng)x=2時(shí),f(x)有極小值f(2)=-8+4=-
(2)由(1)知,f(x)的單調(diào)增區(qū)間為:(-∞,-2),(2,+∞);單調(diào)減區(qū)間為:(-2,2).
分析:(1)求出f′(x),根據(jù)函數(shù)單調(diào)性及極值的定義即可求得;
(2)借助(1)問(wèn)的結(jié)論可求.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)與函數(shù)的極值及單調(diào)性問(wèn)題,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
編寫(xiě)一程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分)定義在D上的函數(shù),如果滿(mǎn)足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界。

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案