精英家教網 > 高中數學 > 題目詳情
如圖,在直角坐標系中,點A(-1,0),B(1,0),P(x,y)()。設與x軸正方向的夾角分別為α、β、γ,若
(I)求點P的軌跡G的方程;
(II)設過點C(0,-1)的直線與軌跡G交于不同兩點M、N。問在x軸上是否存在一點,使△MNE為正三角形。若存在求出值;若不存在說明理由。
(I)軌跡G方程為
(II)不存在這樣的點使△MNE為正△
(I)由已知,當時,




時,,也滿足方程<1>
∴所求軌跡G方程為
(II)假設存在點,使為正△
設直線方程:代入
得:


∴MN中點



在正△EMN中,


矛盾
∴不存在這樣的點使△MNE為正△
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知定點A(-2,-4),過點A作傾斜角為45 的直線l,交拋物線y2=2px(p>0)于B、C兩點,且|BC|=210.(Ⅰ)求拋物線的方程;(Ⅱ)在(Ⅰ)中的拋物線上是否存在點D,使得|DB|=|DC|成立?如果存在,求出點D的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓,是否存在斜率為k(k≠0)的直線,使與橢圓交于不同的兩點A、B,且線段的垂直平分線經過點M(0,-1),求斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設動點到定點的距離比它到軸的距離大.記點的軌跡為曲線
(1)求點的軌跡方程;
(2)設圓,且圓心的軌跡上,是圓軸上截得的弦,當運動時弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線的離心率為2,有一個焦點與橢圓的焦點重合,則m的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓的中心在原點,長軸AA1在x軸上.以A、A1為焦點的雙曲線交橢圓于C、D、D1、C1四點,且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設,當時,求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直角坐標系xoy中,角的始邊為x軸的非負半軸,終邊為射線l:y=x (x≥0).
(1)求的值;
(2)若點P,Q分別是角始邊、終邊上的動點,且PQ=4,求△POQ面積最大時,點P,Q的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓A的圓心在曲線上,圓Ay軸相切,又與另一圓相外切,求圓A的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

自點發(fā)出的光線射到軸上,被軸反射,其反射光線所在直線與圓相切,求反射光線所在直線的方程.

查看答案和解析>>

同步練習冊答案