【題目】已知數(shù)列滿足,.

(1)為遞增數(shù)列,成等差數(shù)列,的值;

(2),是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.

【答案】(1)(2)

【解析】

試題分析:(1)利用數(shù)列的單調(diào)性,得到的符號(hào)去掉的絕對(duì)值,再分布令得到之間的關(guān)系,再利用題目已知等差中項(xiàng)的性質(zhì)列出關(guān)于的等式,即可求出的值.

(2)根據(jù)數(shù)列為奇數(shù)和偶數(shù)的單調(diào)性可得到,兩不等式變?yōu)橥?hào)相加即可得到,根據(jù)題意可得結(jié)合可去掉的絕對(duì)值,為奇或偶數(shù),利用疊加法即可求出數(shù)列的通項(xiàng)公式.

(1)因?yàn)閿?shù)列為遞增數(shù)列,所以,,分別令可得,因?yàn)?/span>成等差數(shù)列,所以,

當(dāng)時(shí),數(shù)列為常數(shù)數(shù)列不符合數(shù)列是遞增數(shù)列,所以.

(2)由題可得,因?yàn)?/span>是遞增數(shù)列且是遞減數(shù)列,所以,兩不等式相加可得,

又因?yàn)?/span>,所以,,

同理可得,所以,

則當(dāng)時(shí),,個(gè)等式相加可得

.

當(dāng)時(shí),,個(gè)等式相加可得

,當(dāng)時(shí),符合,

綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購(gòu)買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購(gòu)買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購(gòu)買80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請(qǐng)求出此定值:如果不是,請(qǐng)說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的值域?yàn)?/span>.

1)判斷此函數(shù)的奇偶性,并說明理由;

2)判斷此函數(shù)在的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;

3)求出上的最小值,并求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系圓C的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)),直線和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).

1)求圓C及直線的直角坐標(biāo)方程;

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn),為線段上的動(dòng)點(diǎn).

1)求證:平面平面

2)試確定點(diǎn)的位置,使平面與平面所成的銳二面角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個(gè)圖形是一個(gè)圓形,其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:

①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是;

②當(dāng)時(shí),直線與黑色陰影部分有公共點(diǎn);

③黑色陰影部分中一點(diǎn),的最大值為2

其中所有正確結(jié)論的序號(hào)是( )

A.B.C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司新研發(fā)了一款手機(jī)應(yīng)用APP,投入市場(chǎng)三個(gè)月后,公司對(duì)部分用戶做了調(diào)研:抽取了400位使用者,每人填寫一份綜合評(píng)分表(滿分為100分).現(xiàn)從400份評(píng)分表中,隨機(jī)抽取40份(其中男、女使用者的評(píng)分表各20份)作為樣本,經(jīng)統(tǒng)計(jì)得到如下的莖葉圖:

女性使用者評(píng)分

男性使用者評(píng)分

7

6

7 8 9 9

1 2 5

7

0 2 2 3 4 5 6 6 7 8 9

0 3 3 3 4 4 5 6 6 8

8

2 4 4 9

0 0 1 2 2 2

9

2

記該樣本的中位數(shù)為,按評(píng)分情況將使用者對(duì)該APP的態(tài)度分為三種類型:評(píng)分不小于的稱為滿意型,評(píng)分不大于的稱為不滿意型,其余的都稱為須改進(jìn)型”.

1)求的值,并估計(jì)這400名使用者中須改進(jìn)型使用者的個(gè)數(shù);

2)為了改進(jìn)服務(wù),公司對(duì)不滿意型使用者進(jìn)行了回訪,根據(jù)回訪意見改進(jìn)后,再?gòu)?/span>不滿意型使用者中隨機(jī)抽取3人進(jìn)行第二次調(diào)查,記這3人中的女性使用者人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有四個(gè)零點(diǎn),則的取值范圍是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案