【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程;

2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.

【答案】12

【解析】

1)根據(jù)曲線的參數(shù)方程,得出,則,而,兩式相除整理得,再代入,即參數(shù)方程和普通方程之間進行轉換,消去參數(shù),即可得出曲線的普通方程;

2設圓心到直線的距離為,由于利用直線與圓的弦長公式求出,由,將求的最小值轉化為最小,進而轉化為圓心到直線的距離,利用點到直線的距離公式求出,即可求出的最小值

解:(1)已知曲線的參數(shù)方程:為參數(shù)),

,得

,又

兩式相除得:,整理得

代入,得,

整理得,即為曲線的普通方程.

2)設圓心到直線的距離為

,∴.

由于,

最小時,最小,因為的最小值為圓心到直線的距離,

所以,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中,平面,四邊形為平行四邊形,點分別為的中點,且,.

1)求證:平面;

2)若,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.

(1)如果直線過拋物線的焦點,求的值;

(2)如果,證明直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對任意的都有,且當時,,則當時,方程的所有根之和為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六、八是中國人的吉利數(shù)字,所以好多瓷器都做成六棱形和八棱形.數(shù)學李老師有一個正六棱柱形狀的筆筒,如圖,底面邊長為,高為(底部及筒壁厚度忽略不計).一根長度為的圓鐵棒(粗細忽略不計)斜放在筆筒內(nèi)部,的一端置于正六棱柱某一側棱的底端,另一端置于和該側棱正對的側棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角、、所對的邊分別為、,,當角取最大值時,的周長為,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六、八是中國人的吉利數(shù)字,所以好多瓷器都做成六棱形和八棱形.數(shù)學李老師有一個正六棱柱形狀的筆筒,如圖,底面邊長為,高為(底部及筒壁厚度忽略不計).一根長度為的圓鐵棒(粗細忽略不計)斜放在筆筒內(nèi)部,的一端置于正六棱柱某一側棱的底端,另一端置于和該側棱正對的側棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的圖象在處的切線方程;

2)若函數(shù)上有兩個零點,求實數(shù)m的取值范圍;

3)若對區(qū)間內(nèi)任意兩個不等的實數(shù),,不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從甲、乙兩個班中各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學生成績的眾數(shù)是83,乙班學生成績的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

同步練習冊答案