9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$,若f(a)=1,則實數(shù)a的值是±1.

分析 由函數(shù)f(x)為分段函數(shù),則須分a≥0以及a<0兩種情況分別代入對應的解析式來求出a,最后綜合即可.

解答 解:∵f(a)=1,且f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$,
∴當a≥0時,有f(a)=2a-1=1,即2a=2,解得a=1.
當a<0時,有f(a)=-a2-2a=1,即(a+1)2=0,解得a=-1.
綜上可得:a=±1.
故答案為:±1.

點評 本題考查了對數(shù)的運算性質,考查了分類討論的思想方法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若直線y=1與函數(shù)f(x)=2sin2x的圖象相交于點P(x1,y1),Q(x2,y2),且|x1-x2|=$\frac{2π}{3}$,則線段PQ與函數(shù)f(x)的圖象所圍成的圖形面積是( 。
A.$\frac{2π}{3}+\sqrt{3}$B.$\frac{π}{3}+\sqrt{3}$C.$\frac{2π}{3}+\sqrt{3}-2$D.$\frac{π}{3}+\sqrt{3}-2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知各項不為0的等差數(shù)列{an}滿足a4-2a${\;}_{7}^{2}$+3a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b3b7b11等于( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某港口水的深度y(m)是時間t(0≤t≤24,單位:h)的函數(shù),記作y=f(t).下面是某日水深的數(shù)據(jù):
t/h03691215182124
y/m1013107101310710
經(jīng)長期觀察,y=f(t)的曲線可以近似地看成函數(shù)y=Asinωt+b的圖象.一般情況下,船舶航行時,船底離海底的距離為5m或5m以上時認為是安全的(船舶?繒r,船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為6.5m,如果該船希望在同一天內安全進出港,請問,它最多能在港內停留(  )小時(忽略進出港所需的時間).
A.6B.12C.16D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx+c滿足條件:①-4a≤b<-2a;②x∈[-1,1]時,|f(x)|≤1,若對任意的x∈[-2,2],都有f(x)≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設a>0,b>0,若a+b=1,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.8B.9C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.k>3是方程$\frac{{x}^{2}}{3-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線的(  )條件.
A.充分但不必要B.充要
C.必要但不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.一個空間幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積為30+6$\sqrt{5}$cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若直線y=-x與函數(shù)y=x2-4x+2(x≥m)的圖象恰有一個公共點,則實數(shù)m的取值范圍為(1,2].

查看答案和解析>>

同步練習冊答案